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As tho’ to breathe were life. Life piled on life
Were all too little, and of one to me
Little remains: but every hour is saved
From that eternal silence, something more,
A bringer of new things; and vile it were
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And this gray spirit yearning in desire
To follow knowledge like a sinking star,
Beyond the utmost bound of human thought.
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In many applications of random-effects models to longitudinal data, such as heart rate

variability (HRV) data, a normal-mixture distribution seems to be more appropriate than
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the normal distribution assumption. While the random-effects methodology is well
developed for several distributions in the exponential family, the case of the normal-
mixture has not been dealt with adequately in the literature. The models and the estimation
methods that have been proposed in the past assume the conditional model (fixing the
random-effects) to be normal and allow a mixture distribution for the random effects (Xu
and Hedeker, 2001, Xu, 1995). The methods proposed in this dissertation assume the
conditional model to be a normal-mixture while the random-effects are assumed to be
normal. This is primarily to fit the HRV data, which seems to follow a normal-mixture
within subjects. Another advantage of this model is that the estimation becomes much
simpler through the use of an EM-algorithm. Existing methods and software such as the
PROC MIXED in SAS are exploited to facilitate the estimation procedure.

A simulation study is performed to examine the properties of the random-effects
model with normal-mixture distribution and the estimation of the parameters using the
EM-algorithm. The study shows that the estimates have similar properties to the usual
normal random-effects models. The between subject variance parameter seems to require
larger numbers of subjects to achieve reasonable accuracy, which is typical in all random-
effects models.

The HRV data is used to illustrate the random-effects normal-mixture method.
These data consist of 9 subjects who completed a series of five speech tasks (Cacioppo et
al., 2002). For each of the tasks, a series of RR-intervals was collected during baseline,
preparation, and delivery periods. Information about their age and gender were also

available. The random-effects mixture model presented in this dissertation treats the



subjects as random and models age, gender, task, type, and task x type as fixed-effects.
The analysis leads to the conclusion that all the fixed effects are statistically significant.
The model further indicates a two-component normal-mixture with the same mixture

proportion across individuals fit the data adequately.
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1 Introduction

1.1. Introduction to Heart Rate Variability
The human body is a complex structure made up of several systems (respiratory,
circulatory, nervous, etc.) which are all designed to function simultaneously. The body
must maintain a normal balance among its internal physiological conditions in order to
function properly. This balance is referred to as homeostasis. One of the systems that
must be controlled and balanced is the heart. The ability of the heart rate to vary is an
important indication of the normal homeostatic mechanisms of the cardiovascular system.
A pérson with high variability in their heart rate shows signs of good adaptability and can
be considered a healthy individual with well-functioning autonomic control mechanisms.
However, a person with low variability in their heart rate often shows signs of poor
adaptability of the autonomic nervous system which can be indicative of a variety of
conditions (Pumprla et al., 2002).

The measuring of heart rate variability (HRV) is a well studied field dating back
to the 1960’s. Measuring HRV is noninvasive and simple to acquire, and has the
property of being reproducible under standardized conditions (Kleiger et al., 1991).
Several different approaches to measuring and analyzing HRV have been used and are

reviewed in section 1.3. The term HRV has been associated with describing variations in



the instantaneous heart rate as well as variations in the RR-interval lengths (Task Force,
1996). The RR-interval quantifies the variations in the heart rate by measuring the time,
typically in milliseconds (ms), between successive peaks, denoted by R in Figure 1

(Jenkins and Gerred, 1996).

Figure 1: Normal Sinus Rhythm

interval interval

Although other possible measures include using the Q or S peaks, the R peak is most
often utilized because it is easier to measure with precision. The choice of peak depends
on the types and placements of the leads used to record the ECG signal. Once a
consistently detectible peak is identified, an accurate measure of the time between these
peaks can be determined. Other terms used within the literature to refer to these intervals
include the interbeat interval (IBI) or the heart period (HP). The term RR-interval will be
used throughout this dissertation.

The study of HRV is common in both research and clinical studies. In clinical
settings, HRV can be used as a tool to monitor the influence of medicine on a variety of
subject populations. Visualizing how the heart rate varies is of great interest to clinicians
because it lends insight into treatment. The importance of accurately characterizing HRV
in different cohorts of patients can have dramatic results in a clinical setting. There has

been considerable research into understanding the variations in heart rates within



different cohorts of diseases, including hypertension, congestive heart failure, heart
transplantation, sudden death, ventricular arrhythmias, and patients with renal failure.
Refer to Task Force (1996) and van Ravenswaaij-Arts et al. (1993) for a thorough
summary of the current research involving measures of HRV. Most significantly,
research has shown that a reduction of HRV in adult patients can be used as a predictor of
risk for acute myocardial infarction (Kleiger et al., 1987 and Odemuyiwa et al., 1991) and
as an early indicator of diabetic neuropathy (Malpas and Maling, 1990). Within the fetal
and neonatal population, it has been observed that acute hypoxia has been associated with
in an increase in HRV (Thaler et al., 1985) and chronic hypoxemia was associated with

decreased HRV (Smith et al., 1988 and Ribbert et al., 1991).

1.2. Motivation
Although there has been a great deal of progress made in the field of HRV, it has mainly
been in the direction of measuring HRV, while little emphasis has been placed on
modeling HRV. The statistical measures that are used to describe HRV are primarily
summary statistics. However, the variability in heart rate cannot be completely
characterized by these measures alone. The underlying distributional properties of the
data must also be explored and understood. The use of modeling in statistics is a
valuable tool that can yield a tremendous amount of information to the researcher.
However, certain assumptions about the data must be met in order to obtain valid
statistical results. For example, the use of the mean as a measure of central tendency is

only reasonable if the underlying distribution is symmetric.



Motivation for this dissertation comes from two studies described briefly here.
In both studies, heart rates from a sample of several subjects were recorded over varying
intervals of time. In the first study, these subjects are a sample of sedated adult hospital
inpatients whose heart rates were recorded for periods of up to 24 hours (Grap et al.,
2006). This particular data set contains one ECG recording per subject. In the second
study, these subjects are a random sample of preterm infants whose heart rates were
recorded during several bottle feeding sessions lasting up to 15 minutes (Pickler et al.,
2006, Pickler et al., 2006, Pickler et al., 2005). In contrast to the first study, this data set
contains multiple recordings for each subject, one for each bottle feeding session.

It is of interest to model the variability in heart rates for the recordings from a
sample of several subjects using RR-interval data in terms of the fixed-effects (age,
gender, treatment, etc.), while accounting for the random-effects (subjects, visits, etc.).
When analyzing either of these data sets, an appropriate model should be used to model
the correlations structures of the RR-interval data within subjects by incorporating a
random subject effects. In the case of the infant data, the correlation structure of the RR-
interval data within each bottle feeding session could also be should also be considered
by incorporating a random visit (bottle feeding session) effects. An obvious choice for
analyzing such data is the mixed-effects generalized linear models (Laird and Ware,
1982). However, the distribution of the RR-interval has been shown to follow a normal-
mixture distribution (Mandrekar et al., 2005; Eckberg, 1983; and Nagaraja et al., 1995).
While methodology for mixed-effects models is well developed for a variety of

distributions in the exponential family, the case of the normal-mixture has not been



thoroughly considered. Xu and Hedeker (2001) do address a case where the random-
effects are assumed to be normal-mixture and the resulting conditional model
(conditioned on the random-effects) to be normal. With regards to fitting the HRV data
described here, however, the random-effects should be assumed to be normal and the
resulting conditional model then assumed to be a normal-mixture, since the series RR-
interval data within each subject (and bottle feeding session in the infant data set) is
distributed with the normal-mixture distribution and not the subjects themselves.
Without the methodology for fitting mixed-effects models to RR-interval data arising
from normal-mixture distributions, researchers have been limited and forced to deal with
the inherent correlation structure of the data in other ways. These methods are
summarized in section 1.6.

The research presented in this dissertation provides the foundations for the
methodology used to estimate parameters in the mixed-effects models when the
conditional data arise from a mixture of normal densities, in particular when modeling
HRYV data. Before further discussion regarding modeling HRV data, the various

measures of HRV and methods used to acquire them are detailed.

1.3. Measuring Heart Rate Variability
Heart rate variability has been used describe variations in both the instantaneous heart
rate and the RR-intervals. Measurements of variations in heart rate can be made in a
number of ways. These methods have primarily been classified as time domain

measurements or frequency domain measurements. In this section, these methods will



briefly be described in accordance with the standards recommended by the Task Force
of the European Society of Cardiology and The North American Society of Pacing and

Electrophysiology (1996).

1.3.1 Time Domain Methods
Time domain methods are used to summarize the variations in heart rate. They
are often utilized because of their simplicity. These methods involve determining either
the series of instantaneous heart rates or the series of intervals lengths between successive
R peaks. Instantaneous heart rate is typically measured in beats per minute (BPM) and
RR-interval length in milliseconds (ms). There is an inverse relationship between RR-
interval length and instantaneous heart rate:

60000
heart rate (BPM)

RR-interval length (ms) =

For example, a heart rate of 100 beats per minute (BPM) corresponds to an RR-interval
length of 600 ms or 0.6 seconds. There has been some research into which of these two
measures should be used when studying variations in heart rate (Khachaturian et al., 1972
and Graham and Jackson, 1970). In 1974, Jennings, Stringfellow, and Graham assessed
the normality of (instantaneous) heart rate and heart period (RR-interval) distributions in
adult subjects. They found that neither heart period nor heart rate measures were
consistently normally distributed. In the 10 samples they examined, 60% of the heart
period samples and 100% of the heart rate samples failed to pass normality tests. Thus,
they advocated the use of heart period data rather than heart rate because it is “more”

normally distributed. This argument is not very convincing as to choosing either of these



measures when restricted to the assumption of normality. A better choice perhaps is to
consider a model which allows for the true nature of the distribution to be assumed.

Typical variables calculated with time domain methods are the mean RR-interval,
the mean heart rate, the difference between the longest and shortest RR-interval (range),
and the difference between night and day heart rate. A common measurement made over
long recording periods is the SDNN. This variable represents the standard deviation of
all RR-intervals over the entire recording period and is a measure of the variance of the
RR-intervals, representing all the cyclic components responsible for variability in the
recording period. SDNN is not a well defined statistical quantity because it depends on
the length of the recording period (Task Force. 1996). As the length of recording
increases, the total variance will also increase. Thus, it is inappropriate to compare the
SDNN values from recording periods of different lengths without standardization.

When looking at segments of a recording period, several other variables have
been considered, including the SDAAN and SDNN index. The SDAAN is the standard
deviation of the average RR-intervals calculated over short periods, usually 5 minutes,
from a longer recording, usually 24 hours. This measure estimates changes in heart rate
due to cycles longer than 5 minutes. The SDNN index is the average of all standard
deviations of the RR-intervals calculated from the 5 minute segments of the entire 24
hour recording. This measure estimates changes in heart rate due to cycles shorter than 5
minutes.

Often times, differences in successive RR-intervals are examined. In these cases

the most commonly used measures include the RMSSD, NNS50, and p-NNS50. The



RMSSD represents the square root of the mean squared differences of successive RR-
intervals. The NNS50 is defined as the number of interval differences of successive RR-
intervals greater than 50 ms, while the p-NNS50 is the proportion derived from dividing
NNS50 by the total number of RR-intervals.
Many of the statistical time domain measurements are highly correlated, thus it is

strongly recommended (Task Force, 1996) to use the following three:

e SDNN (estimate of overall HRV);

e SDANN (estimate of long-term components of HRV); and

e RMSSD (estimate of short-term components of HRV).

1.3.2 Frequency Domain Methods
An alternative method for measuring HRV involves the use of frequency domain or
power spectrum methods. Time domain methods make it difficult to obtain precise
physiological data about changes in autonomic function (Pumprla, et al., 2002). This has
led some researchers to focus on the cyclical changes in HRV. Frequency domain based
methods are used to explore how power, or variance, is distributed as a function of
frequency.

The heart rate is primarily influenced by two factors, “the intrinsic firing rate of
the automatic (pacemaker) cells of the sinoatrial node” and “the modulating influences of
the autonomic nervous system” (Ori et al., 1992). There are several modulating
neuroregulatory influences on heart rate such as respiration, blood pressure, cardiac

output, thermoregulation, and the renin-angiotensin system. These influences affect the



sinus node through the autonomic nervous system. The two main subsystems of the
nervous system are the sympathetic and the parasympathetic systems, both of which
supply the sinoatrial node. The sympathetic system, which enhances spontaneous firing
rate, increases the heart rate, while the parasympathetic system exerts a counter inhibitory
action, which slows the heart rate. The balance of these two subsystems is most likely
the “principal determinant of the normal heart rate” (Ori et al., 1992). These two
subsystems operate at different frequencies, thus variations in heart rate relating to each
of the subsystems can be identified and quantified by use of frequency domain methods.
In order to perform a frequency domain analysis of HRV a series of consecutive
RR-intervals is first determined. The intervals must be free of artifacts, such as missed or
spurious R-waves. These consecutive time intervals can be treated as if they are equally
spaced (van Ravenswaaij-Arts et al., 1993). A tachogram is then produced through the

steps described below and demonstrated with Figure 2 (Pumprla et al., 2002).

Figure 2: Sample Tachogram
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First the ECG signal is obtained and the RR-intervals are determined (middle portion
of Figure 2). Next, the series of consecutive RR-intervals are plotted consecutively, with
the length of the interval (in ms) on the vertical axis and interval number on the
horizontal axis (upper portion of Figure 2). A curve passing through the peaks of the
intervals is then drawn and represents the variation in heart rate over time. This signal
(curve) can be analyzed using time series methods (lower portion of Figure 2).

Time series methods require that the signal be periodic and stationary (Penaz,
1978). A signal is periodic if it repeats itself exactly after some period or cycle, just as an
ECG signal does. With HRV data the requirement is that the data be at least weakly
stationary (Weber et al., 1992), in that only the first (mean) and second (variance)
moments are required to be independent of time. Violations of this assumption can have
serious consequences for statistical tests when pooling across time. The signal can be
made stationary by using a detrending procedure such as subtracting a least-squares
polynomial approximation from the original signal or by high-pass filtering (Penaz,
1978). The periodic and stationary signal can then be analyzed by using time series
methods such as the Fast Fourier transform.

The Fast Fourier transform decomposes the power spectrum into its frequency
components and quantifies them in terms of their relative intensity. For healthy adult
subjects, the power spectrum of short term recording periods (2-5 minutes) consists of
three main frequency components, high frequency (HF) bands ranging between 0.15 Hz
and 0.4 Hz, low frequency (LF) bands ranging between 0.04 Hz and 0.15Hz, and very

low frequency (VLF) bands ranging between 0 and 0.04 Hz. In longer recording periods
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(24 hours) an ultra-low frequency (ULF) band has been identified in the range between
0 and 0.003 Hz. The VLF band is then represented in the range of 0.003 Hz and 0.04 Hz
(Task Force, 1996). The band limits for these frequency components have been reported
to vary somewhat from the bands described above, within different cohorts of subjects.

The HF component has been associated with parasympathetic activity and is
represented primarily by variations in respiration. Cyclical changes in heart rate
associated with respiration typically occur between 0.25 and 0.35 Hz in normal adults
(Fallen 1988, Pumprla et al., 2002, Pagani et al., 1986). The LF component is associated
with both parasympathetic and sympathetic activity (Stein et al., 1994 and Pumprla et al.,
2002) and is thought to be primarily affected (due to changes in blood pressure) by
cyclical variation in the baroreceptor system (Kamath et al., 1987, Sayers, 1973, and
Pomeranz et al., 1985). This type of variation typically occurs around 0.1 Hz. The VLF
and ULF bands are less understood, but have been associated with thermoregulatory
processes (Fleisher et al., 1996 and Fallen et al., 1988), peripheral vasomotor
(chemoreceptor) activity (Fallen et al., 1988, Ponikowski et al., 1997, and Francis et al.,
2000), and the rennin-angiotensin system (Duprez et al., 1995, Taylor et al., 1998, and
Akselrod et al., 1981).

The Fast Fourier transform (FFT) produces a power spectral curve decomposing
the power spectrum into its frequency components. An example of the FFT for HRV
data is shown in Figure 3 (van Ravenswaaij-Arts et al., 1993). The vertical axis is used to
represent power, also termed variance, and the horizontal axis displays frequency in hertz

(HZ). The units for power are typically in squared seconds per hertz, s*’Hz, or
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equivalently, using milliseconds, ms® x 10 Hz. The power units in Figure 3 are
shown in squared beats per minute per hertz, BPM?*/Hz since the tachogram was
produced with instantaneous heart rates rather than RR-intervals. The VLF, LF, and HF
peaks have been identified in this Figure 3 to indicate the separate components of the
power spectral density.

Figure 3: Sample Power Spectrum
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The total area under the power spectral curve is defined as total power. The area under
the curve within a particular band is defined as component power. The ratio of the power
of the individual components to the total power, minus the VLF component, is termed
normalized power. Expressing the HF and LF components in normalized units
“emphasize[s] the controlled and balanced behaviors of the two branches of the
autonomic nervous system” and minimizes “the effect on the values of LF and HF
components of the change in the total power” (Task Force, 1996). Fractional power is
defined as the percent of the total power expressed by the individual components (Ori et
al., 1992). The ratio of LF to HF (LF/HF) has been used as a measure of sympathovagal

balance or sympathetic modulation (Task Force, 1996).
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The time and frequency domain measures taken from a 24 hour ECG recording
are highly correlated (r > 0.85) (Kleiger et al., 1991). Total power and the square of
SDNN are virtually equivalent since both are measures of the amount of total variability
in the heart rate signal. The HF measures correlate strongly with RMSSD and p-NN50
while LF and VLF measures correlate strongly with SDNN index. ULF measures

correlate well with SDNN and SDANN.

1.4. HRV Data Acquisition
In order to obtain interpretable measures of HRV, the ECG signal must be collected with
accuracy. Today ECG signals are obtained by converting analog signals to digital signals
with computers through a process termed digitization. The sampling rate is the most
important issue concerning the acquisition of the ECG signal. There are a finite number
of samples that can be obtained during any specified interval of time. Thus errors are
introduced when the signal is ECG signal is sampled and digitized. Choice of the
sampling frequency typically depends on the ECG bandwidth and on the type of analysis
of interest. A high enough sampling rate must be chosen so that the frequencies of
interest are identifiable, typically twice the highest frequency, while minimizing
computer memory issues. The suggested sampling rate is between 500 and 1000 Hz
(samples per second), providing a basic resolution of 1 — 2 milliseconds (Merri et al.,
1990 and Riniolo and Porges, 1997).

Once the signal has been digitized, the RR-intervals can be identified. Besides

issues regarding the sampling frequency, other errors can be introduced into the signal.
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Noise in the signal may result in spurious peaks in the signal, making R-peak
identification algorithms problematic. The algorithm may identify spurious peaks as R-
peak, if the amplitudes are large enough, thus resulting in spurious RR-intervals.
Interruptions in the signal, even if in small intervals of time, disrupt the continuity of the
time series which can have implications on the assumptions in the analyses. In any ECG
recording it is nearly impossible to obtain a signal free of noise and without interruptions.
In order to account for this, much research has been conducted regarding preliminary
processing of the RR-interval series.

Several types of RR-interval detection techniques are available ranging from
simple smoothing or filtering procedures of the digitized data to more complex methods
utilizing derivative or template matching techniques (Friesen et al, 1990). Some progress
has also been made utilizing wavelet transformation techniques to reduce the noise in the
ECG signals (May et al., 1997 and Gyaw and Ray, 1994). The progress with wavelet
transforms is significant in that methods unitizing wavelet analyses do not require the
signals to be stationary, where as methods such as the FFT do require this property.
Comparison between the results obtained using FFT and wavelet transforms for analysis
of HRV data have been compared and minimal differences noted (Pichot et al., 1999).

After RR-interval identification, the series must be examined for artifacts.
Artifacts in the RR-interval series are typically due to missed or spurious beats. The
number of artifacts that may be obtained in a series is highly dependent on the length of
the signal. Thus, considerable attention has been given to obtaining methods for

identifying artifacts (Malik et al., 1989, Berntson et al., 1990, and Weber et al., 1992).
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When spurious beats occur, typically due to noise in the signal, no information
regarding the signal is lost. The effect of a spurious beat results in two identified
(artifact) RR-intervals, whose sum is the correct RR-interval. In contrast to spurious
beats, when heart beats are missed information regarding the signal is lost. The result is
an artifact RR-interval with an excessive length, being the combination of two or more
RR-intervals. When the number of identified artifacts is minimal, the original ECG
recorded can be examined to determine the correct RR-interval lengths surrounding the
artifact RR-intervals. When the number of identified artifacts is large other methods have
been suggested, such as interpolating the missing intervals with using surrounding
intervals or splitting the excessively large intervals into two or more shorter intervals
(Berntson et al, 1997). Without resolution of these artifacts, significant biases are likely
to be obtained and be misleading (Berntson and Stowell, 1998, Malik and Camm, 1993,
Ramanathan and Myers, 1996 and Xia et al., 1993).

While many of the methods discussed thus far are not employed in this
dissertation, they are provided for completion and to illustrate the complexity of the
nature of HRV data. Next, the data set used for applications in Chapter 4 is introduced.

Then, in the remaining sections of this chapter, the modeling aspect of HRV is discussed.

1.5. Heart Rate Variability in the Loneliness Study
The data used for illustration in this dissertation is a subset of nine healthy adults selected
randomly from 45 male and 44 female undergraduates who participated in a loneliness

study at the General Research Center at the Ohio State University (Cacioppo et al., 2002).
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This data subset will be referred to as the Loneliness data from this point forward. The
same subset is used in Mandrekar’s dissertation (2002) in part to illustrate the
significance of methods involving normal-mixture distributions, rather than unimodal
normal distributions, to estimate the parameters of the distribution for RR-interval data.
Her methodology, however, requires each minute from each subject to be estimated with
separate models. Although this can lead to decent estimates for the mixture proportion,
component means, and component variances, it lacks the ability to use the information
(data) from the other subjects and even other minutes for the same subjects to obtain
more precise estimates. Random-effects models, on the other hand, allow the
observations within and between subjects to take on specific variance-covariance
structures, which allow the estimates of the model to be obtained using all of the data,
across all subjects. The methodology proposed in this dissertation extends that suggested
by Mandrekar by using random-effects methodology within an EM algorithm in order to
estimate parameters for a model containing all the minutes from all of the subjects.

During the study, several cardiovascular and psychosocial measures were

recorded on each of the subjects enrolled. ECG was recorded using the standard lead 11
configuration with Ag / AgCI disposable electrodes (Portrace 9113) and the signal quality
was ensured after the attachment of the sensors and a 15 minute adaptation period had
elapsed (Mandrekar, 2002). During the ECG recording period each subject performed six
psychosocial stressor tasks and one orthostasis stressor task. The psychosocial stressor
tasks included five speech related tasks and one verbal mental arithmetic task (assigned

randomly to each subject). The mental arithmetic task (MA) had 4 minutes of baseline
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and 4 minutes of task. The “Saab” (BS) speech task had 4 minutes of baseline, 2
minutes of preparation, and 2 minutes of delivery. The remaining 4 speech tasks, why
[’m likeable (LS), ask for date (AS), describe way to school (WS), and describe
inanimate objects in room (IS), each had 2 minutes of baseline, 2 minutes of preparation,
and 2 minutes of delivery. The orthostasis stressor task (OS) had 8 minutes of task.
Thus, a total of 48 minutes was collected for each subject. The BS task was always the
last task performed with the OS task immediately before it. Table 1 displays the
demographic data for each subject and the order in which the stressor tasks were
preformed.

Table 1: Task Orders and Demographics

Subject Task Order Gender | Age

1 WS, MA, LS, AS, IS, OS, BS | Female 19

2 AS, IS, WS, LS, MA, OS, BS | Female 19

3 MA, LS, IS, WS, AS, OS, BS Male 19

4 AS, WS, MA, IS, LS, OS, BS Male 24

5 LS, WS, IS, AS, MA, OS, BS | Female 19

6 LS, AS, IS, WS, MA, OS, BS | Female 18

7 WS, LS, AS, MA, IS, OS, BS | Female 19

8 MA, AS, IS, LS, WS, OS, BS Male 18

9 WS, IS, AS, MA, LS, OS, BS Male 18
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Each analog ECG signal, for every minute, and from every subject, was first acquired
at 1000 Hz then decimated to 500 Hz. The R-peaks were identified using waveform
matching templates and then a time/amplitude criterion. Once the R-peaks have been
identified, the RR-interval series was calculated using the distance between successive R-
peaks. After collection, the ECG data was carefully edited and checked for any artifacts.
The algorithm used for artifact identification is described in Chapter 4.

Mandrekar (2002) fit a normal distribution to each minute of ECG data in the
Loneliness study, among the various tasks and subjects, and noted that a single normal
distribution provides a marginal fit to the RR-interval data in about 50% of the cases, and
a two-component normal-mixture model seemed more appropriate. Her research
proposed fitting a two-component normal-mixture model to each minute of data and
showed promising results. However, as discussed earlier, her methodology lacks the
ability to account for specific correlation inherent in the data. In the next section, the

current progress towards modeling HRV is reviewed.

1.6. Modeling Heart Rate Variability
In section 1.5, it was suggested that the distributions of the minutes of RR-interval data,
taken from a single subject appear to come from a two-component mixture distribution.
To date, most methodology has modeled data from each subject independently of the
other subjects in the studies. This is less desirable to a model containing all the subjects
for several reasons. First, fitting several models requires a considerable amount of time

when there are a large number of subjects in the data sets, or when there are several
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recordings taken from each subject over a study period. In addition, the modeling
within subjects and across several recordings assumes that these data are independent
when there is an inherent within subject correlation structure. Furthermore, subjects are
known to vary considerably with regards to HRV, a single model would be able to
quantify this variability for researchers.

Although the past 45 years have seen a great progress in the measures of HRV,
little has been made directly modeling heart rate data. In order to better understand the
variations in heart rate, the underlying distribution of RR-interval data must be further

explored.

1.6.1 Distributional Properties of Heart Rate Variability
HRYV measures are typically assumed to follow a normal distribution. Several studies,
however, have reported that RR-interval data do not necessarily follow a normal
distribution (Nagaraja et al., 1995, Jennings et al., 1974, Hashida at al., 1973, Eckberg et
al., 1983, and Riniolo and Porges, 2000). An incorrect assumption for the underlying
distribution of the data can lead to invalid results in statistical analysis. Some progress
has been made in determining an appropriate distribution for the data in order to
accurately estimate model parameters. Hashida et al. (1973) commented on the
irregularity in the shapes of the histograms of RR-interval data taken from different
subjects in atrial fibrillation, or absolute arrhythmia. Studies before them (Jordan, 1954
and Horan and Kistler, 1961) had shown varying shapes ranging from a “normal

distribution, unimodal and bimodal distribution tailing to the right, and less commonly
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high plateau-like or long, low, flattened distributions” (Hashida et al., 1973). They
determined that the most appropriate fit to the histograms of their interval data was an
Erlangian distribution. Around the same time, Jennings et al. (1974) noted that RR-
interval data failed to satisfy the normality assumption in 60% of their samples of young
adults. In young healthy subjects, Eckberg (1983) observed that as controlled breathing
rates decreased, the bimodal pattern in the RR-interval data became more apparent.
Nagaraja (1995) examined the distribution of RR-intervals in 10 CHF patients and noted
previously unrecognized bimodal patterns in HRV at nighttime. Mandrekar and Nagaraja
(2005) showed that the absolute values of the successive differences in RR-interval data
approximately follow Weibull distributions. The methods proposed in their work suggest
that the use of a Weibull distribution may also improve artifact detection algorithms. All
of these studies agree that the data is not normally distributed and many seem to suggest a
bimodal pattern in both healthy and heart diseased subjects. It is not known at this time
why the RR-intervals exhibit a bimodal pattern. However, some speculation and research
has been made. Eckberg (1983) suggested that respiratory sinus arrhythmia (RSA) may
be the physiological explanation for the bimodal pattern. Heart period shortens during
the inspiratory phase and lengthens during the expiratory phase of a breathing cycle.

Often times, the most appropriate models for data with bimodal distributions are
mixture models (not to be confused with mixed-effects models). This is due to the
flexibility in the shape of the distribution across the range of values for its parameters.
Nagaraja (1995) modeled RR-interval data with a normal-mixture distribution and

Mandrekar (2002) describes in detail the methodology used to fit normal-mixture
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distributions with two components to RR-interval data from 9 healthy young adults. It
is not difficult to argue that data across subjects are independent. However,
independence in the data within subjects needs to be further examined. In this
dissertation, the methodology for modeling normal-mixtures used by Mandrekar is
extended to include fitting appropriate correlation structures to the data. These
extensions focus on combining group level information in order to obtain more efficient
estimates of the parameters of the distribution.

In comparison to fixed-effects models, mixed-effects models are able to model
data in which the observations are not independent. This is accomplished by allowing for
a combination of fixed and random-effects in the model. The mixed-effects model is
defined in detail in section 2.2. In order to distinguish between the term mixed, used in
references to mixed-effects models, and the term mixture, used to describe the
distribution, mixed-effects models will be referred to as random-effects models from this
point forward. In this dissertation, random-effects models allow for a combination of

fixed and random-effects.

1.6.2 Random-Effects under the assumption of Mixture Distributions
Although much progress has been made in the field of mixture distributions, as well as
fitting mixed-effects models, little has been published concerning fitting random-effects
models under the assumption of a mixture distribution. Belin and Rubin (1995)
published a paper analyzing repeated-measures data on schizophrenic reaction times by

modeling the response times for and within each schizophrenic individual as a two-
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component mixture distribution. Around the same time, Xu and Hedeker (2001)
explored mixtures in random-effects regression models while Verbeke and Lesaffre
(1996) fit a linear mixed-effects model with heterogeneity in the random-effects
population. Although it is tempting to use the modeling techniques suggested by these
previously mention authors to fit our data, several significant issues need to be addressed.
The methodology proposed by these authors is not clearly detailed in their work, making
application difficult. Second, these methods assume that the random-effects follow a
mixture distribution, and the resulting conditional density (conditioned on the random-
effects) to be normally distributed (Verbeke et al., 2001). The response variables for
their models then follow a complex type of mixture distribution. These require
complicated methodology, involving a combination of the EM algorithm and the Fisher
Scoring algorithm, to obtain estimates for the parameters of the model. For this research,
the opposite is assumed. Here, the random-effects are assumed to be normally
distributed, and the resulting conditional distribution (conditioned on the random effects)
is then a normal-mixture distribution. We would like the errors to be distributed as a
normal-mixture, while the random-effects remain normally distributed. This difference
here is that the subjects are not assumed to be grouped, but rather the RR-intervals within
the recordings from each subject. A model with these assumptions then leads to a much
more elegant algorithm used for obtaining parameter estimates for the model as will be
shown in Chapter 2.

In this dissertation, a method is proposed for modeling RR-interval data without

ignoring the true nature of their distribution, yet still accounting for more appropriate
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correlation structures between and within the subjects. Theoretical and methodological
details for the proposed model will be outlined in chapter 2. In chapter 3, the model will
be tested with several simulated data sets, and then used to fit the Loneliness data in
Chapter 4. Future research involving the normal-mixture random-effects model will be

discussed in Chapter 5.



2 Methodology

2.1. Introduction
In this chapter, a random-effects model is defined where the residuals are assumed to
follow an M-component normal-mixture distribution and methods are outlined for
maximum-likelihood estimation, using an Expectation-Maximization (EM) algorithm. In
section 2.2, the normal random-effects model is defined and the notation used throughout
this dissertation is introduced. The normal “random-effects” models, as defined in this
section, are more commonly referred to as normal “mixed-effects” models, and contain
both fixed and random-effects. In order to avoid confusion with the terms “mixed” and
“mixture”, the “normal-mixed model” is referred to as the “normal random-effects
model” in this dissertation. In section 2.3, the two-component joint normal-mixture
random-effects model is defined. The model is extended to include M-components in
Section 2.4. Then, in section 2.5, the distributional properties of the M-component joint
normal-mixture random-effects model are discussed. A brief review of estimation in
normal random-effects models is covered in Sections 2.6. In section 2.7.1, maximum
likelihood estimation, using the EM-algorithm, for the parameters of the AM-component
normal-mixture model is reviewed. The EM-algorithm is then extended, in section 2.7.2,
to include fixed-effects in the M-component joint normal-mixture model. This will be
accomplished by defining a set of weights for each component of the mixture, weighting
the observations by these component weights, and then applying standard maximum-
likelihood techniques to obtain parameter estimates of the M likelihoods, given the

weighted observations. The weights introduced in this section provide a way of reducing
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the problem of estimation in the M-component normal-mixture model to M separate
estimations of joint normal models. The EM-algorithm is then further extended, in
section 2.8, to incorporate random-effects into the M-component normal-mixture model
by proportionately assigning the random-effects to the M components and fitting M
separate random-effects models. The M estimates of the random-effects produced by
these models are then combined to obtain the overall variance estimates of the random-
effects. In section 2.9, methods for testing the significance of the model parameters are
described. The chapter is concluded in section 2.10 with a general discussion of the M-
component joint normal-mixture random-effects model, including its benefits and

limitations.

2.2. Normal Random-Effects Model Definition

The normal random-effects model introduced by Laird and Ware (1982) can be written as
y=Xa+ZB+¢, 2.1)

where

y is the N x 1 vector of observed response values,

a is the P x 1 vector of fixed-effects parameters,

X is the N x P observed design matrix corresponding to the fixed-effects,

B is the Q x 1 vector of random-effects parameters,

Z is the N x Q observed design matrix corresponding to the random-effects, and

€ is the N x 1 vector of residuals.
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This model assumes that B has a O-variate normal density with mean vector 0 and

variance-covariance matrix G. Using the symbol ~ for the phrase “is distributed as” and

a subscript to indicate the dimensions of the multivariate normal density, this can be
denoted with B ~ NQ (O,G) . The vector of random-effects, B, is assumed to be
independent of the vector of residuals, €, which is assumed to be follow an N-variate
normal density with mean vector 0 and variance-covariance matrix X . That is,

€~ Ny (0, Z). Under these assumptions, y then follows an N-variate normal density
with mean vector Xa and variance-covariance matrix V=2ZGZ'+X. Thatis, y isa
vector of observations taken from Ny (Xa, V).

The model in equation (2.1) can be equivalently expressed as y = Zf + €, by
assuming the residuals have mean vector Xa rather than 0. Thatis, € ~ Ny (Xa, Z).

This is the first step in redefining the normal random-effects model to incorporate the
assumption of a mixture distribution for the residuals. In this chapter, the normal
random-effects model, described here, is extended to a random-effects model in which
the errors are assumed to have an M-component joint normal-mixture density. This will
be done in the next section for the two-component case and then extended to include M-

components in section 2.4.

2.3. Two-Component Joint Normal-Mixture Random-Effects Model Definition
A two-component joint normal-mixture random-effects model can be defined as

y=ZB +¢g, (2.2)
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where y, Z, B, and € are defined as in equation (2.1). Here, the random-effects
considered are random subject-effects for a model containing S subjects. It is assumed
that the vector of random subject effects, B,is Ng (O,G) . For this model definition, € is

assumed to follow a joint normal-mixture density with two N x 1 component mean
vectors, Xaj and Xay, two N x N component variance-covariance matrices, 21 and
27, and an S x 1 vector of mixture proportion parameters, A . Here, X is the fixed
effect design matrix defined in(2.1), and the oy are P x 1 vectors of fixed-effect
parameters. This will be denoted

8~JA4X(X(11,XOL2,21,22,7»). (2.3)
The vector of mixture proportion parameters A contains the S subject proportions of the
first normal distribution and the vector (1 - X) contains the S subject proportions of the
second normal distribution, in the joint mixture distribution. It is important to understand
that the joint density of the residuals, €, is a product (multiplication) of normal-mixture

densities and not a mixture of multivariate normal densities. The joint density of the

residuals will be explicitly defined within this section.

Suppose that N )i observations, j =1,...,S, are taken from S subjects with

S
N = Z Nj . A two-component normal-mixture random-effects model can be specified

J=1
for these data as

iy = Azit+ Bazip + -+ Bszis + €y (2.4)
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where Yij is the i observation, i =1,..., N s from the j’h subject, Ji is the random-

effects parameter for the j” subject, zjj is the corresponding design variable for the i"

observation on the j” subject (zjj =1 for the 7™ subject and zjj =0 forall j'# j),and
th

&jj is the residual for the i" observation from the /" subject. In matrix notation, let y j

and € j be the N jx 1 vectors of observations and residuals, respectively, from the Vi

!

subject. Thatis,yj=(y1j y2j o Yij) andej=(a‘1j £j gij .

Defining Z ; :(Zl j %2j v 2N, j) , the two-component joint normal-mixture

random-effects model in equation (2.4), for the /" subject, can be expressed using matrix

notation as

yj=Zjﬂj+8j. (2.5)
This model assumes that the S ; are independent across j and follow identical normal
distributions with mean 0 and variance ag, independent of the vector of residuals € j
Using the acronym “iid” for the phrase “independently and identically distributed”, this

can be expressed as [ ;7 are iidN (0, 0(25 ) The residuals, Eij » for subject j, are

independent across i, however, they are assumed to follow a two-component normal-

mixture distribution with component mean parameters, 71 and u 2> component

variance parameters, 0'12 and crg, and mixture proportion parameter, A j- The vector of

residuals, € i is assumed to follow a two-component joint normal-mixture density
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determined by the product of the N Ji univariate two-component normal-mixture
densities for the gjj - That is, the two-component joint normal-mixture density of the
vector of residuals, € i denoted by ¢ jpzx , is

N

2 2
i=1

where the two-component univariate normal-mixture density for the i" residual from the

j’h subject is
F\eijs g1 #ij2:01 095 Aj | = A\ &ijs if1,0 +( - J)¢ gij> Hij2,07 |- (2.7)

Here, ¢ (g,-j; Hijk ,0'1%) is standard notation for the univariate normal density with mean

. 2 2 1 -1 2
Hijk and variance o k=12,¢ Ejjs Hijk >0 | = > exp > (s,-j _/‘ijk)
271‘0'k ZO'k

The ¥ component mean vectors, jk = ( HijkssHN ; jk) , seen in the joint

density in equation (2.6), are vectors containing the & component means of the N fi
residuals from the /” subject. When there are no fixed-effects in the model, the Hijk are

equal across i, and the means can be expressed as Hijk = Hjk ,Vi. Thus,

Mk = ( Mk M jk )' . Extensions with fixed-effects will be derived by modeling the
component means fjjk . This is accomplished by defining a vector of fixed-effects

parameters,
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ap =(a1x a2k - apg), (2.8)

and a corresponding design matrix, X Iz for the j”’ subject,

X141 X152 0 M P
X251 X252 o X24P
Xj = :J ] . J (2.9)
*N;jjl XN;j2 = XNjjP

Here, pk is the p’h fixed-effects parameter, p =1,..., P, for the K" component, and Xijp
is the corresponding observed design variable of the p” fixed-effects parameter for the i
observation on the j” subject. This model contains ( P -1) fixed-effects parameters,
@) » A3k s --.» @ pf »and one intercept parameter, @ , within each component. The &”
component mean, k =1,2, for the i residual on the j subject is then

Hijk = o) Xjj] + Q) Xjj2 + -+ A PEXjip. (2.10)
The component mean vectors in equation (2.6), for the j’h subject, are then expressed as
H;1 =X oy and p ;o =X ;ay. These component mean vector, X o , contain the
means of the N j residuals, for the & component, determined by the observed values of

the fixed-effects.

The component variance-covariance matrices, X k> of the two-component joint

normal-mixture density, in equation (2.6), are N x N diagonal matrices with the

component variances along the diagonals and zeros on the off diagonals. That is,
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2
oL o --- 0
Ejkzdiag(ak,ak,...,ak)= ' k ' hat (2.11)
2
0 0 oy

The expression diag( )will be used to simplify notation when denoting diagonal

matrices. In this notation, the diagonal elements (or matrices) are listed in order within

the parenthesis, and the off diagonal elements (or blocks) are zeros (or blocks of zeros).
The structure in equation (2.11), with cov(e,-j,el-‘ j) =0, Vi#1i,is indicative of the

independence assumption imposed on the residuals within each component. The two-
component joint normal-mixture distribution, introduced in equation (2.3), for the ;"

subject, is denoted as
£ ~JMX (X jo1, X jag, L 1, E j2,4; ). (2.12)
The moments of the residuals, € j»are described below. Using the rules for

calculating expected values, the expected value of the i residual on the j* subject is

found by
o8}
E(ey)= [ oy s (egsmosyaof 3.5 )dey
—o0
o8} 0
=Aj J.gij¢(5ij§/1ijlso'12)d5ij +(1—Aj) ‘[gijgé(g,-j;y,-jz,a%)dgij (2.13)

—QC —oC

= 2 it +(1= 25 ) 2.
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This is the mean of a two-component normal-mixture random variable. Since the

mixture proportion, A i within the ;" subject, is assumed to be equal across the

observations, the expected value of the vector of residuals from the j'h subject, E (s j ),

can be expressed as

E(ej)=4;X a1 +(1-4;

X j)x . (2.14)

J
By defining N jx N b diagonal matrices, A j with the 4 j along the diagonals and zeros
on the off diagonals, denoted by A j= diag(l j,ﬂ j,...,l j) , the expected value of € i
can be completely expressed in matrix notation as

E(ej)=A;X 0 +(1;-A;)X 0, (2.15)
where 1 j isan N J -dimensional identity matrix. The notation used in equation (2.15)
will be useful later in this section when a model with multiple subjects is defined. The

mean vector, E (e j ) , contains the N j expected values of the N Ji univariate normal-

mixture densities. This will be referred to as the general form of a mean vector from a

two-component joint normal-mixture density with component mean vectors, X o and
X jay, component variance-covariance matrices, X ;1 and X ;5 , and mixture

proportions, A o defining the diagonal elements of A j- The variance of the i residual

2
on the j” subject, Ejj» by definition, is var( &jj ) =E (55 ) - E(g,-j ) . The expected value
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of &jj is calculated in equation (2.13). Simplifying, as in equation (2.13), and applying

E(gg.) = /‘yz'k + 0']% for the N(,uijk,a/%) case, the expected value of 81:]2- is

2Y_ a2 o 2 (a2 L2
E(eij)—ij(,uijl+al)+(l ﬂ'])(#ij2+o-2)' (2.16)

Plugging E (8,-1-) and E (85) into the variance equation yields:

Vaf(gij)=/1j(#,-]2-1+012)+(1—/1j)(/1,-]2-2+G§)"[}“j1“ijl +(1—/1j),u,'j2}2

-ty +(1-27) 3 + 25 (1= 25 ) g1 - g2 ) -

(2.17)

The second line, in equation (2.17), expresses the variance of the gjj asasum of the

within-component variances and the between-subject variance, all of which are weighted

by their corresponding mixture proportions. The variance-covariance matrix for € j is
thenan N jx N Ji dimensional diagonal matrix with the variances for the N Ji residuals

along the diagonal and zeros on the off diagonal. That is,
Ej = var(aj) = diag[vm(qj),var(azj),...,var(gij )} (2.18)
As with the component variance-covariance matrices, the structures of the X jo with

cov( Ejj> & j) =0,Vi=#i, are indicative of the independence assumption imposed on the

residuals. The structure in (2.18) will be referred to as the general form of a variance-

covariance matrix from a two-component joint normal-mixture density with component



34

mean vectors, X ! and X o2 component variance-covariance matrices, X jl and
¥ j2 and mixture proportion, A4 i defining the block diagonals of A j

Next, the model in equation (2.5) is extended to include multiple subjects. For

S
N = Z N i the two-component joint normal-mixture random-effects model, for S

j=!
subjects, is given by equation (2.2), where y and € are the N x 1 vectors of observations
and residuals, respectively, from the /” subject, B is the S x 1 vector of random subject

effects, and Z is the observed N x S design matrix corresponding to the random subject

effects, with

Y1 €] B Zi 0 - 0
e 0 Zy - 0

y=| Y2 [ e=| 2 g2 Lanaz<| O 22 Y )
yS ES Bs 0 0 - Zg

For this model, the random subject effects, B, are assumed to be independent and follow

an S-variate normal distribution with mean vector 0 and variance-covariance matrix
o 2 2 2
G—dzag(0'5,a§,...,0'5). (2.20)

Thatis, B~ Ng (O,G) . For the variance-covariance matrix in equation (2.20), the

variances along the diagonal are equal and the covariances are zero, since the S ;7 are
assumed to be iid N(O,0'2 )

The vector of residuals, €, is independent of the vector of random-effects and

assumed to follow a two-component joint normal-mixture density determined by the



product of the NV univariate two-component normal-mixture densities for the Ejj - That

is, the two-component joint normal-mixture density of the vector € is

s Ny
2 2
drx (811,12, 21, X2,4) = HH (Eij;/‘ijls#iﬂ’al o547 (22D
= :1

where the two-component univariate normal-mixture densities are defined in equation

(2.7). The density in equation (2.21) is the extension of equation (2.6) to S subjects. The

S x 1 vector of mixture proportions, A = (ll A o Ag )' , in equation (2.21), contains

the mixture proportions for the S subjects. A special case is when the mixture

proportions across subjects are assumed equal. Then, A =4 TR and

A=(A 4 - 4).

The component mean vectors, pg = ( Bij seer b Sk’) , seen in the joint density, in

equation (2.6), are vectors containing the component means of the N residuals for all

subjects. Extensions with fixed-effects are derived by modeling the component means

Hijk > as in equation (2.10). This is accomplished by defining a vector of fixed-effects

parameters, a , as in equation (2.8), and a corresponding design matrix,

X=|"7], (2.22)
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where the X jaJ= 1,...,S, are defined in equation (2.9). Notice that the vector of
fixed-effects is the same for each subject. The component mean vectors in equation
(2.21) can then be expressed as p) = Xa; and py = Xap . The component mean vector,
Xa , k=1,2, contain the means of the N residuals for the K" component, determined by

the observed values of the fixed-effects.

The distribution in equation (2.21) is denoted as in equation (2.3) by
€ ~ JMX (Xay,Xap,Z1,27,)) and is the two-component joint normal-mixture density
with component mean vectors, Xaj , component variance-covariance matrices, X , and
vector of mixture proportions A, for £ =1,2. The component variance-covariance
matrices, X , are block-diagonal matrices with the subject component variance-

covariance matrices blocked along the diagonals and blocks of zeros on the off diagonals.

That is,
Iy =diag (Z14. 22k, ESk )- (2.23)
Notice that the structure of the component variance-covariance matrices, given in

equation (2.23), for the model containing all subjects, with cov(a,-j,s,-j‘) =0,Vj# j and

cov(g,-j,g,-* j) =0,Vi=i', now takes into account the assumption of independence in the

residuals between subjects, along with the assumption of independence in the residuals
within subjects.

The expected value vector of €, E(s), is a vector containing the S expected value

vectors, E (8]' ) , for the S subjects, given by
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E(e1) A Xay +(1-21) Xap
E(Sz) B /12Xa1+(1—/12)X0L2 (2.24)

E(QS) AsXay + (1'— As ) Xay
By defining an N x N block-diagonal matrix, A, A = diag(Al,Az,...,A S ) , the expected
value of €, can be completely expressed in matrix notation as

E(e) = AXaj +(I-A)Xay, (2.25)
where I is an N-dimensional identity matrix. This is the form of a mean vector, for S

subjects, from a two-component joint normal-mixture density with component mean

vectors, Xaj and Xay, component variance-covariance matrices, X and X7, and

vector of mixture proportions, A, defining the diagonal blocks of A . The variance-
covariance matrix for € is then a block-diagonal matrix with the subject variance-
covariance matrices blocked along the diagonal and blocks of zeros on the off diagonal.

That is,

T =diag(X1,Z2,...Z5), (2.26)
where Ej, j=1,..,8, is defined in equation (2.18). This is the form of a variance-

covariance matrix, for S subjects, from a two-component joint normal-mixture density
with component mean vectors, Xa| and Xay, component variance-covariance matrices,
X and X7, and vector of mixture proportions, A , defining the diagonal blocks of A .

In the next section, the two-component joint normal-mixture random-effects

model definition seen in this section is extended to include more than two components.
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Although much of the extension is obvious, the complete model definition for M

components will be derived for completion.

2.4. M-Component Joint Normal-Mixture Random-Effects Model Definition
In this section, the two-component joint normal-mixture random-effects model,
introduced in section 2.3, is extended to a model containing M-components. The model

is still defined as in equation (2.2), however, € is assumed to have an M-component joint

normal-mixture density with M component N x 1 mean vectors Xaj, X9, ..., Xaps,

M component N x N variance-covariance matrices 21, 29, ..., )f,and M -1

component S % 1 vectors of mixture proportion parameters, Aj A2 Aps_1. Thatis,
€ ~ JMX(Xal,...,XaM,21,...,ZM,7\.1,...,7»M_1 ) (2.27)

Thej"' element in the ¥” vector of mixture proportions, ﬂjk , j=1..,8, k=1.. . M-1,

contains the proportion, for the /' subject, of the & normal distribution, in the joint

M
normal-mixture distribution. It is assumed that Z A ik = 1,0<A ik <1, thus, only M —

k=1
1 of the M mixture proportions, for each subject, need to be estimated, since
M-1
Aim=1= 2 Ajk -
k=1

The M-component joint normal-mixture random-effects model for the j” subject

is expressed in equation (2.5). The residuals, Ejj s for the /" subject are assumed to be

independent across i, however, they are assumed to follow an M-component normal-
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mixture density with component means, u j1s Hj25 -5 HjM > cOmponent variances,

0'12 , 0'% Y s 0'1%/1 , and mixture proportions, /1]-1 ﬂjz, oo ﬂjM—l- The vector of

residuals, for the j* subject, € It is then assumed to follow a density given by the product
of the N b univariate M-component normal-mixture densities for the Ejj - That is, the M-

component joint normal-mixture density of the vector € j is

¢JMX( JE NI VAR P Zstﬂjla---,ﬂjM—l)
(2.28)

_ 5\2

N
Il
AL

2 2
f(gijWijls---a/‘ijM’O'l ,...,O'M,/ljl,...,/le_l),

where the M-component univariate normal-mixture density of the i residual from the j**

subject is given by

2 2

The component mean vectors, p jk = ( M jkses MN ; i k) , seen in the joint density,

in equation (2.28), are vectors containing the component means of the N ki residuals from

the /” subject. When there are no fixed-effects in the model, the Hjjk are equal across i,

and the means can be expressed as Hijk = ,ujk,‘v’i. Thus, Hjk = (/‘jk’---’/‘jk )’ .
Extending the model to include fixed-effects, the vectors aj and the corresponding
design matrix, X Iz for the j’l’ subject, are defined as in equations (2.8) and (2.9),

respectively. The models for the ¥ component mean, for the i residual on the 7™ subject
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are given in equation (2.10). The component mean vectors for the density in equation
(2.28) are then expressed as Mk = Xjak , k=1,.,.M.

The component variance-covariance matrices, X k> of the M-component joint

normal-mixture density in equation (2.28), are diagonal matrices with the component
variances along the diagonals and zeros on the off diagonals, given by equation (2.11).
The M-component joint normal-mixture density, for the /” subject, of the vector of

residuals, € i expressed in equation (2.28), is denoted as

£ ~ IMX (X 000 XGOS E florr E AL AL A1) (2.30)

The expected value of the i" residual for the /" subject is computed as in equation (2.13),

and is given by
M
E(ej)= Y Ajkssk- (2.31)
k=1

The expected value of the vector of residuals from the i subject, € j»>can be expressed,

using matrices, as

M
E(ej)= D E(e;)=A X ay, (2.32)
k=1
where the Ajk =diag(/1jk,/1jk,...,/1jk) are Nj x Nj diagonal matrices with ﬂjk
along the diagonals and zeros on the off diagonals. The mean vector, in equation (2.32),

is the form of a mean vector from an M-component joint normal-mixture density with

component mean vectors, X jak , component variance-covariance matrices, X jk , and
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diagonal matrix A k> containing the & component mixture proportion for the N
subject, A ik k =1,...,M . The variance-covariance matrix, X s for € i is given by

equation (2.18), where

M . (M 2
Var(gij):kz:l’ljk(ﬂijk +0'k)— kzlljkyijk (2.33)

denotes the variance of the i residual on the ;" subject.

The model in equation (2.2), containing S subjects, remains as it was defined in
section 2.3, however, the vector of residuals, €, is assumed to follow a distribution
determined by the product of the N univariate M-component normal-mixture densities for

the Ejj - That is, the M-component joint normal-mixture density of the € is

(2.34)

where the M-component univariate normal-mixture densities are defined in equation

(2.29).

The component mean vectors, pg = ( TEPARSAT! Sk’) , seen in the joint density in

equation (2.34), are vectors containing the component means of the N residuals for all
subjects. Extensions with fixed-effects are derived by modeling the component

means ijjk . as in equation (2.10). This is accomplished by defining a vector of fixed-

effects parameters, a , as in equation (2.8) and a corresponding design matrix, X, as in
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equation (2.22). The component mean vectors in equation (2.34) can then be

expressed as py = Xog, k=1,2,---,M . The component variance-covariance
matrices, Xy , of the M-component joint normal-mixture density in equation (2.34), are
block diagonal matrices with the subject component variance-covariance matrices, X ik

blocked along the diagonal and blocks of zeros on the off diagonal, given in equation
(2.23).
The expected value vector of € is given by

M
E(e)= D AgpXog, (2.35)
k=1
where Ay =diag (A1, A2k, Asg )are N x N block-diagonal matrices with the A j

blocked along the diagonals and blocks of zeros on the off diagonals. This is the form of
a mean vector, for S subjects, from an M-component joint normal-mixture density with

component mean vectors, Xaj , component variance-covariance matrices, X , and

diagonal matrix A k> containing the K component mixture proportion for the 7™ subject,
A ik, k=1,...,M . The variance-covariance matrix, X, for €, is a block diagonal matrix
with the subject variance-covariance matrices, X js blocked along the diagonal and

blocks of zeros on the off diagonal, given by equation (2.26), where & o j=1..,8,is

defined in equation (2.18) and var(a,-j) is given in equation (2.33).
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[t the next section, the distribution of the observations, y ij > is discussed. It will

be shown that although the distribution of the vector of observations, y, is intractable, its

definition may be avoided for purposes of estimation and parameter testing.

2.5. Distributional Properties of the Joint Normal-Mixture Random-Effects Model

In section 2.3, the distributions of B and € were completely defined for two components.

The density of € was then extended in section 2.4 for the case of M-components. Now

that the distributions of B and € have been completely specified, the distribution of y

can be discussed. This distribution will provide the likelihood for all of the model

parameters, given the observed data. Start by considering the distribution of y
conditional on B. Using the properties of conditional expectation and the fact that linear

combinations of normal distributions are also normal distributions, the conditional

distribution of y, given B, can be shown to be a joint normal-mixture density given by
yIB~ J.MX(ZB + Xay,....,ZB + XOLM,Zl,...,EM,M,...,KM_l). (2.36)

To see this, first notice that the expected value of y |B is

E(y|B)=E[(ZB+¢€)|B]=E(ZB|B)+ E(e|B)
M
=7ZB+ Z A Xag
k=1
M M (2.37)
= Y ARZB+ D ApXay
k=1 k=1
M
= A (ZB+Xo).
k=1



44

This is the form of a mean vector, for S subjects, from an M-component joint normal-
mixture density with component mean vectors Zp + Xa; and vector of mixture
proportions, Aj , defining the diagonal blocks of Ay, k=1,...,M . The variance of y |
is given by

var(y|B)= var[(ZB +¢€)| B:l =var(ZB|B)+ var(e|pB)=var(e)=X.  (2.38)
This is the form of a variance-covariance matrix, for S subjects, from an M-component
joint normal-mixture density with component mean vectors Zp + Xa.j , component
variance-covariance matrices Xy , and vector of mixture proportions, Aj , defining the
block diagonalé of A, k=1,..,M . The distributional form of y | B is the same as that of
the residuals, an M-component joint normal-mixture density, since B is assumed to be a
constant in the conditional model. The variance of € and y|B are equivalent, however
the mean for y |B includes the B where the mean for the € does not. Thus, the

distribution in equation (2.36) follows.

Now, consider the vector of observations, y. The expected value of the vector of

observations is found by taking the expected value, with respect to B, of the conditional
expectation of y |B. Thatis, E(y) = E[E(y|B)} Using the fact that E(B) =0, by

assumption, the expected value of y is
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k=1
M
=E(ZB)+ ) E(AgXay) (2.39)
k=1
M
= 2 ApXoy
k=1

This is the form of a mean vector from an M-component joint normal-mixture density

with component mean vectors, Xo; and Xay, and vector of mixture proportions, A,
defining the block diagonals of A . Next, the variance of y is found by taking the
variance, with respect to 3, of the conditional expectation of y | B and adding thgt to the
expected value, with respect to B, of the conditional variance of y |B. That is,

var(y) = varI:E(y | B)] + E[var(y l B)] . Then the variance of y, which will be denoted
by V,is given by

V =var(y)= var[E(y l B)] + E[var(y | B)]

M
= var[ZB +Y A ank} +E[ var(g) ] (2.40)
k=1
=ZGZ +var(e)=ZGZ +X,
which is the form of a variance-covariance matrix, for S subjects, from an M-component
joint normal-mixture density with component mean vectors, Xou , component variance-
covariance matrices, Vy = ZGZ'+ X} , and vectors of mixture proportions, A,

k =1,...M . The structure of the variance-covariance matrices for the observations, V ,

is indicative of the assumption that observations are correlated within subjects,
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var(y,-j ) = ag + var(s,-j) and cov(y,-j,y,-‘j ) = Gg,Vi 1, (2.41)
and independent across subjects,
cov( Yij» y,J) =0,Y) # J, (2.42)
where var(sij) is defined in equation (2.33).

The form of the mean and variance for the vector of observations, y, was

described above. Next the form of the distribution will be discussed. Recall that the joint

distribution of two vectors of random variables, y and B, can be expressed as the

product of the conditional distribution of y given B and the marginal distribution of B,

f(y,B) = f(y|B)f(B). The marginal density of y is then

fy)= O'T f(y1B)s(B)dB. (2.43)

Since the expression for the conditional density,

S Njl m )
£(v18)=TTTI| X 20 vy + £j.07 )| (2.44)
j=li=1{k=1

involves a double product of a summation over the components, the integral in equation
(2.43) can not be simplified by interchanging the integral with the double product and
therefore does not have an explicit form. Determining the maximum likelihood estimates
would involve maximizing this integral which requires numerical methods involving

indefinite integrals. The marginal density of the i/ observation from the ;" subject in the
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vector of observations, y, however, is tractable and is shown below. The marginal
density of y;; with respect to f is

« 0

f(yij)= [ [ fyi8) )ABr--dBs
—0  —o (2.45)
=_L..._L £ (i18;)7(8) i aps.

The densities of the random subject effects are iid N (O,ag) , denoted by ¢ ( p j;O,az) .

When the random subjects effects, S 7, are conditioned on, they are assumed to be
constant values. Thus, the Yjj canbe expressed as the sum of the residual and the

random effect, YVij = yi] € - The conditional densities, Yij | B 7, are each univariate

normal-mixture densities with component means f ' + Hijk » component variances 0'1% ,
and mixture proportions ljk ,i= 1,...,Nj, j=1..,8, k=1,..,M . The density of

Yij | B )i is then expressed as

P | BBy + it By + Higag 07 10 M e hpg 1 ), (2.46)

where the vectors A contain the K" component mixture proportions for the S subjects.

Then, the marginal density of the observations in equation (2.45) can be expressed as
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o o0

Flog)= [ J[r(185)1(87) s

—00 —0

o o ([ M
J J. {Z jk¢(yzj Bj + Hijk>0y ):I¢(/3],0 O’g‘) pi..dBs (2.47)

=;Z_:1 Ak O])' ...O]z[gé(y,-j;ﬁj +yl-jk,cr]%)¢(ﬂj;0,a§)}dﬂl...dﬂs :

The integrand in equation (2.47) is now expressed as a bivariate normal density. It can be

shown that the density for the y ij> is the same M-component normal-mixture density as

that of the residuals, with the exception of the variance parameter. To see this, the

integrand in equation (2.47) is simplified by separating the terms involving g Ji from the

terms not involving £ IE

(v Iﬂj)f(ﬂj)=¢(yij;/lijk +ﬂj501%)¢(ﬂj;0"’§)

1 -1 2 1 -1
= exp X 2[y,-j~(uzjk +,3j):| ——=CXpy— f;

277
27z0']% Sk 27r0'§ 205
1 5 (2.48)
= exp 'Bj X
,/27r0']% ,/27[0'%
ex 2 o 2 2 2uik B+ B
p Yij —2yijHijk =2y B+t + 214k By + B

2
%k
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1 1 2 2
= expy—— |:y,-j“2)’ij#ijk +#,-jk} x
o) 2 2 20
,f ﬂak,lzzroé. k

2 2
1B Py 2meh 2

expy—— —
2 2 2 2

After further simplification, the result in equation (2.48) can be expressed

no 27r0'§ k
(2.49)
2 2
ok o3)| 5 o3y -s)
exp i~ B7 -2
20'20'2 J 2+ 2
k°o Ok 795

After completing the square for the exponential term involving the iz the result, in
2
o3
2
o3

expression, for the term involving £ It that resembles a normal probability density

2
(o7 +
2

, to form an

equation (2.49), is then multiplied by a constant factor of one,

function (pdf):
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(2.50)

The expression, in equation (2.50), for the factor on the left is free of S Iz thus it can be
brought out of the integrand in equation (2.47), as the A Jjk term was. Now, the integral

of the factor on the right is equal to one, since it is expressed as a normal density with

o5 (2 i)
(o7 +a3)

mean and variance Thus, the marginal density for the Yij is
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f(yu)‘? O}[f(yylﬂj)f(ﬁjﬂdﬁl ap
_% zjkdj ..?[;p(y,-j;y,-jk +,Bj,a£)¢(ﬂj;0,a§”dﬁ1...dﬂ5 2.51)

— . x e E—— P ..
Pt ]k o 02 +02 p 2(02 +02) yl] :uljk
- k79 k= ~¢6

The density in equation (2.51) is recognized as an M-component normal-mixture density

with component means Hijk » component variances, (0']% + og ), and mixture proportions,

A ik - Thus, the forms of the densities for Yij and gjj are equivalent with the same

component means and mixture proportion parameters, but different variances parameters.

It is important to understand here that the joint density of the vector of observations, y,

and joint density of the vector of residuals, €, do not share this property. Although the
forms of the component means for the two vectors are equal, the variance-covariance
structure for the vector of observations must now take into account the correlations on
observations within the subjects. Since the observations are not independent within
subjects, as the residuals are, the joint density of the vector of observations does not
follow as it did with the residuals by taking the double product of the N univariate
mixture-normal densities given in equation (2.51). It will be shown in section 2.8, that
estimation of the parameters for the M-component joint normal-mixture random-effects

model can be obtained using the marginal density of the vector of observations.
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However, before this it is necessary to review the methods for maximum likelihood

estimation in the normal random-effects models and in the normal-mixture model.

2.6. Estimation in the Normal Random-Effects Model
In this section, the methods used for estimation in the normal random-effects model,
described in section 2.2, are reviewed. More specifically, in section 2.6.1, the general
methods used for maximizing the likelihood of the data are given, while estimation of the
fixed-effects parameters, random-effects parameters, and variance parameters are covered

in more detail in sections 2.6.2, 2.6.3, and 2.6.4, respectively.

2.6.1 Methods of Estimation
Suppose a random sample of N observations is obtained from a normal random-effects
model as defined in equation (2.1). The likelihood of the model parameters, given the

vector of N observations, is given by
L=L(oyy)=(27) V2 V[ V2 exp {—%(y ~Xa) vV l(y —Xa)}, (2.52)

where a is a vector of fixed-effects parameters and y is a vector containing all the

variance parameters. The log-likelihood function is then written as

| = l(a,y;y) = ——]; log(2n)—llog(V’—l(y—Xa)' V_1 (y -—XOL)
2 2

{ (2.53)

=C—5 log|V|+(y - Xa) V—l(y—Xa) ,
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N . . . C .
where C = —?log(27r) is a constant that can be ignored in the maximization process.

Estimates of the parameters for the model given in equation (2.1) are found by
maximizing the log-likelihood given in equation (2.53) with respectto a and 7.

There are several methods that can be used to maximize the log-likelihood function,
which may lead to different estimates of the model parameters. One method, referred to
as maximum likelihood, first maximizes the log-likelihood with respect to the variance
parameters, while treating the fixed-effects parameters as constants. Once the variance
parameters are obtained, the fixed-effects parameters are then estimated by maximizing
the log-likelihood with respect to the fixed-effects while treating the variance parameters
as constant. This approach can produce variance parameters that are biased downwards
because they are based on the assumption that the fixed-effects parameters are known
(Brown and Prescott, 1999).

A second approach is the residual maximum likelihood (REML) method. This
approach starts by removing the fixed-effects parameters from the log-likelihood,

defining it only in terms of the variance parameters. Then, a likelihood function based on
the full residuals, y — Xa, rather than the ordinary residuals, y — X& — Zﬁ must be
determined. It has been shown that y — Xa and a are independent (Diggle et al., 1994).
Since the full residuals are a linear combination of y, the joint likelihood for a and the
variance parameters v , can be expressed as a product of the likelihoods based on y — Xa
and a :

L(y,05y)=L(x;y ~ X&) L(a;6,Y). (2.54)
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Thus,
. L(nasy)
Liyyy—Xa)=——. 2.55
(ny-Xa) L(0d.1) (2.55)
From equation (2.52),
L(y,a;y) ]V‘_l exp {—%(y - Xa) Yt (y- X(x)}. (2.56)

Furthermore, & has a multivariate normal distribution with mean and variance given by
the maximum likelihood estimated described in equations (2.61) and (2.62), respectively.

Thus,
~ -1 1/2 1,. ' -1 A
L(a;a,y)oc‘X'V X) exp{g(a—a) X'V X(a—a)}. (2.57)
Then, taking the ratio of equations (2.56) and (2.57) yields the REML likelihood:
-1/2 ,
L(y;y — X&) o ]x'V‘lx‘ v Y2 exp{—%(y —xa) vl(y- x&)}. (2.58)

The REML log-likelihood is then given by

1
log L(y;y —X&)=K —-;-{mgM “log X’V_IX' +(y-Xa) vi(y- x&)}.(2.59)

In equation (2.59), notice that although & appears in the expression for the log-
likelihood, it only does so as a function of the variance parameters, since it is an estimate.
The variance parameters are then estimated by maximizing the REML log-likelihood
given in equation (2.59), with respect to the variance parameters. The resulting variance
parameter estimates are unbiased because the REML likelihood uses the fact that the

fixed-effects are parameters and not constants. The fixed-effects parameters are then
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estimated by treating the variance parameters as fixed and maximizing the REML log-

likelihood with respect to the fixed-effects parameters.

2.6.2 Estimation of Fixed-effects Parameters
In order to obtain the fixed-effects estimates, the log-likelihood (or REML log-
likelihood) must be maximized by differentiating the log-likelihood (or REML log-

likelihood), with respect to a , and setting the resulting expression equal to zero. That is,
X'V7IX(y-Xa)=0 (2.60)

The solutions to this equation are the maximum likelihood estimates for the fixed-effects

parameters:
. Sl -1
a=(X'V x) xv-ly. 2.61)

The variance of & is given by

. S S -1 1\ 7!
var(a):(X’V X) X'V var(y)V X(X’V X)

1 1
X'V‘lvx(X'V‘lx) . (2.62)

- (X'V‘lx)_
_1o\7!
~(xvx]
The variance of a will show some downward bias, although very small, because it is

based on an assumption that V is known (Brown and Prescott, 1999).
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2.6.3 Estimation of Random Effects Parameters

The vector of random-effects, B, is assumed to follow a normal distribution with mean
vector 0 and variance-covariance matrix G, B~ N (O,G) . The specific values of the

random-effects are taken to be realizations of a sample from a distribution. The expected
values of the random-effects are then zero. It is possible, however, to obtain “estimates”

of the random-effects, [, referred to as the predicted values of the random-effects, by
defining a joint likelihood in terms of o, B, and y. To do this we take the product of

the likelihoods for y |B and B,

L(oB,y;y)=L(a.vz:y IB)L(YG:B). (2.63)
The likelihood for B is written as

1/2

Liyg:B) =n 12|G[ eXp{—%(B)'G_l (B)). (2.64)

and the likelihood for y |B is given by
—1/‘ 1 [
Lio,yx:y |B) o[22 exp(~ (y ~Xo~Zp) £ Hy-Xa-2ZB)}.  (2.65)
Thus, the joint likelihood for a, B, and y can be written as

L(oB.yy) e [2 2jG 2

| L _q (2.66)
exp{—z[(y - Xo - Zﬁ) I (y - Xo - ZB) +B'G B:|},
and the corresponding log-likelihood function can be expressed as
1
l(a,B,y;y) oc —5{logl2‘ + log‘G{} -
(2.67)

%{(y ~Xa-Zp) 27! (y - Xa - ZB) + B'G'IB}.
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To determine the maximum likelihood solution for B, we take the derivative of the
log-likelihood (or REML log-likelihood), with respect to B, and set the resulting

expression equal to zero. That is,

Hob1y) 751 (y-Xa-2)-GTp
e (2.68)
=2x7!(y - Xa) ‘(Z'Z—IZ +G7! )B'

Setting this equation equal to zero and using the fact that V= ZGZ'+ X, yields the

maximum likelihood solution for 8,

B= (z'z—lzch—l)_1 25 (y - Xa)
ez a2 o xa
f(z:z"l)(Z'z‘lZJrG‘lﬂ_l(y—Xa)

_ :z " 22"10‘1}—1 (y - Xa) (2.69)

-1
=|(v-z)z~ ¢! +2Z’_1G_1J (y - X))

Cwp—l177!
=|VZ™'G } (y—Xa)

=GzVl(y-Xa).

The variance of [3 is given by
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3\ _ vl -1
var(B)=GZ'V™" var(y -Xa) V™ ZG

1
-Gz'v~! va{y - X(X'V'lx) X'V‘ly}V‘IZG

-1
~Gz'v~! var{ I—X(X'V‘lx) X'yl

y}V—IZG

. A SR
~GZV I—X(X'V x) X'V

1
V[I—V_IX(X’V_IX) xlv‘lzc

-1
{GZ'—GZ'V‘IX(X'V‘IX) X']V‘1

1
ZG—X(X'V‘lx) X’V'IZG}
-1 1 1) L on -1
—czvl_gzv X(X'V x) xv-lza.

(2.70)

The variance of [3 will be biased downwards due to the fact that V is assumed to be

known (Brown and Prescott, 1999). However, this bias is small.

2.6.4 Estimation of Variance Parameters
The variance parameters are also obtained by maximizing the log-likelihood function.
The derivatives of the log-likelihood functions with respect to the variance parameters,
however, are nonlinear. Thus, an iterative approach, such as the Newton-Raphson
algorithm, is often used to find the maximum likelihood solutions. Variance and
covariance estimates of the variance parameters for any given structure can also be
obtained by using large sample theory. These estimates are based on asymptotic theory

and should be interpreted with caution.
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2.7. Estimation in the Normal-Mixture Model
In this section, the maximum-likelihood methods used for estimation in the normal-
mixture model are described. A mixture model arises when measurements collected
belong to a series of classes, but whose individual class membership is unavailable to the
researcher. If this membership were known, then a variable, indicating class, could be
included as a fixed-effect in the model. Without this information, the definition of the
likelihood equation is considerably more complex. After definition of the likelihood
equation, the usual approach proceeds by iteratively solving the maximum likelihood
equations using Newton-Raphson. This approach, however, is tedious, because it
requires first and second derivatives of a likelihood involving matrices. Methods to
obtain estimates of the parameters in the normal-mixture model could be simplified by
using the Expectation-Maximization (EM) algorithm, which treats the membership
information as missing and, hence, treats the data as incomplete. The algorithm iterates
by completing a series of steps, called E-steps and M-steps, in order, until the process
converges to the maximum likelihood estimates of the parameters. In the E-step, the
“incomplete” data are estimated so that a “complete” data set can be defined. The M-
step, then, maximizes the likelihood with respect to the parameters of the normal-mixture
model, given the complete data. This maximization is often much simpler and current
methods for estimation exist. In section 2.7.1, an EM-algorithm for fitting data that arise
from an M-component normal-mixture distribution will be described. In section 2.7.2,

specifics involving incorporating the fixed-effects into the model are detailed.
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2.7.1 EM Algorithm for the M-Component Normal-Mixture Model
Suppose that a random sample of V observations is obtained from an M-component

normal-mixture density, i=1,---, N,

2 2 M 2
f(g,';,ul,...,,uM,al ,...,UM,AI,...,AM_1)= Z ik¢(8,-;,uk,0'k ), (2.71)
k=1

where ¢ (e,-; yk,alz) is standard notation for a normal density with mean pj and

variance 0']% . The likelihood for the model parameters, given the N observation, is given

by the joint density of the sample:
2 2 N M 2
L{ - 10 04 ,...,O'M,/ll.,,,.ﬂM_l;s) =H Z /1k¢(8,~;,uk,ak ) (2.72)
i=lk=1
Notice that the observations here are denoted by &; rather than by y ;, in order to

incorporate this notation into the model containing random-effects in section 2.8. To

obtain the maximum likelihood estimates, the log-likelihood,

2 2 N M 2
l(ﬂ,m,ﬂz,al ,02;8)=210g Z/ik(;’(ei;#k,a ) , (2.73)
i=1 k=l

is maximized, with respect to the parameters Ay, uj, and O'I% . The maximum likelihood

estimates are found by taking the first partial derivatives of the log-likelihood in equation

(2.73), with respect to the particular parameters of interest, setting them equal to zero,
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M-1

and solving for the parameters. Under the constraint that Ay, =1- Z Ak » the first

k=1

partial derivatives are given below in equations (2.74)- (2.76) (Hasselblad, 1966):

2 2
ﬂ‘% ¢(€i;ﬂk’ak)_¢(£i;#M’GM) k=1, M—1 (2.74)
aﬁk - : M P) - PERET) .
=1 ) ’17n¢(3i;ﬂma0'r%1)
L m=1 N
i ]
o
N /1k¢(5i§,uk,°'/%) ’ 2”‘
ol %k
p =2 h=1,..,M (2.75)
Mk 12
i=1 Z ﬂ'm¢(£i;/lmao'%1)
m=l1
L J
) ) 3]
g —U
ﬂk¢(8i;#k,o,%) (i = )" 2k) -1
ol Ok
LS =1, M (2.76)

2
60’k

-~
—_

% M¢(Ei;um,031)

m=1

As described earlier, the solutions to these equations are easily determined by using the

EM-algorithm

In the EM-algorithm, the first step is to define the incomplete data (Dempster et

al., 1977). After defining the incomplete data, each iteration of the algorithm involves an

expectation step (E-Step) followed by a maximization step (M-Step). The algorithm

continues until the process converges. For an M-component normal-mixture model, the
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incomplete data are single indicator variables assigning each observation to one of the

M-groups. This can be written as

e _ i th
Ci = 1, if & ek. group 2.77)
0, otherwise

These indicator variables have distributions specified by their posterior probabilities,

ik = P(c,-k = llg,- ) The complete data, then, are comprised of the observed data and
the incomplete data, (¢; ¢;; c¢jp -+ ¢jpg). Sincethe cj can be determined only
through the posterior ;i , the complete data can also be defined as the

(¢s =1 mip -+ 7ipg). Ineach E-Step, the complete data are obtained by the

expected values of the c;jj, given the observed data. These estimates represent the

probabilities of the i" observation falling into the ¥” group. The posterior probability is

found by taking a weighted average over the M components. That is,
, 2
ﬁk¢(ei,ukﬁk )
E[cik|ei | = P(cik =1|ei) = mik = 7 : (2.78)

2 ik¢(8i;#k,(f,%)
k=1

The M-step of the EM-algorithm, then, uses the complete data to estimate the parameters
of the distribution using maximum likelihood techniques. The estimates in equations
(2.78) are used to simplify the maximum likelihood estimates for the parameters. The
maximum likelihood estimates of the parameters, given the complete data, for the M-

component normal-mixture model, are given in equations (2.79) - (2.81). The details of
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their derivations can be found in Appendix 7.1. The maximum likelihood estimate of

the proportion of total observations falling into the #” group, Ak , 1s given by

N
D 7k

A =L k=1,.,M-1. 2.79
f = 2.79)
A~ M_l A
The MLE of the proportion falling into the M group is then v =1- Z Ak . The
k=1

maximum likelihood estimate for the mean of the ¥ group, HE > 18

N
D ik
ik =’—=]17———,k:1,...,M, (2.80)
2. ik
i=l1
and the maximum likelihood estimate for the variance of the group, 0']% , 18
N 2
D 7k (& — i)
62 ==l k=1, M. 2.81)

N
2. ik
i=1
Each iteration of the EM-algorithm involves computing equations (2.78) - (2.81), in

order. Since A, uj,and 0']% are unknown for the first iteration, starting values need to

be specified to determine the ;4. In subsequent iterations, maximum likelihood

estimates produced in the M-step will be substituted to determine the 7;; . The algorithm
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continues until the process converges. These steps are summarized below, with
superscripts in parenthesis to denote the iteration number.

First [teration (¢ = 1):

» E -step: Starting values for '11((0)’ y](co), and a/:z‘(o) are specified to compute
ﬁik(l) with equation (2.78).
» M -step: The maximum likelihood estimates for /1,((1), ,ulgl) ,and 0']%(1) are

computed in order with equations (2.79) - (2.81) using ﬂ'ik(l).

Iterations greater than 1 (> 1)
_ . (1+1) . : .
» E -step: The estimates, 7% , are computed with equation (2.78) using

/1,(([), ,u/((t), and a]%(t).

* M -step: The maximum likelihood estimates for Z]((Hl), y](cHl), and a/%(Hl)

are computed in order with equations (2.79) - (2.81) using nik(Hl) .

At the end of each of the iterations, a check for convergence is performed. Convergence
can be checked in a number of ways. One such check is to determine the differences in
the parameter estimates between the previous iteration and the current iteration. If the
squared sum of the absolute values in the differences is smaller than some predefined
tolerance level, then convergence has been achieved and the algorithm ends. Otherwise

the algorithm continues with the next iteration. Another check is to use the differences in
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the 7;; between iterations, however this may be too restrictive and can result in longer

convergence times.

2.7.2 Extensions with Fixed-Effects
As shown in previous sections, extensions with fixed-effects are derived by modeling the

component means for each observation, ¢;, i=1,..,N as

Hik = QX2 + QX2 + -+ apgxip, (2.82)
where o pk is the p"’ fixed-effect parameter, p =1,..., P, in the K" component,
k=1,.,M,and Xip is the corresponding observed design variable of the p'h fixed-

effects parameter for the i observation. Here, note that the design elements for each
observation remain the same across components. Let € be the N x 1 vector of observed
values, aj be the P x 1 vector of fixed-effect parameters for the £ " component, and X

be the N x P observed design matrix corresponding to the fixed-effects. In matrix

notation,

£l aif xi o xp o xp
& a X X e X

e=| 2| op=| | anax=| 21 22 7 2P (2.83)
£N apk X1 XN2  AINP

The vector of fixed-effects parameters, oz , within a component, includes one intercept

parameter, ajj, and P — 1 fixed-effects parameters, ay , ..., apg . The likelihood for

the two-component normal-mixture model parameters, given the observed data, is
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N 2
L(Xal,..., XG,M,0'12,...,0'12\4,/7.1,...,/11\/[_1;8) = H Z /1k¢(5i§/1iks0;% ) (2.84)
i=lk=1
The maximum likelihood estimates of the parameters in (2.84) can be obtained by taking
the first derivatives of the log of the likelihood above, with respect to each of the
parameters, equating them to zero, and solving for the parameters. However, the
likelihood, in equation (2.84), is expressed as a product of a sum, which does not simplify
in the log form. Therefore, the maximum likelihood equations are non-linear and a
Newton-Raphson type of iterative algorithm needs to be applied. As described in the
previous section, use of an EM-algorithm could simplify the maximum likelihood
estimation process considerably. It should be noted that the incomplete part of the data,

defined by the zjj, appear in the procedure only through their posterior probabilities,
7k - Essentially, if one defines the posterior probabilities divided by the sums of the

posterior probabilities, within a component, as component weights of the corresponding
observations, then the component weighted observations follow an N-dimensional joint
normal density. The means of the distributions for the component weighted observations
are the same as the component means and the variances of these normal distribution are N
times the component variances. To further establish this, it is shown that the maximum
likelihood estimates of the parameters, based on the likelihoods given the component
weighted data, are constant factors of those obtained in the previous section.

Let w;; be defined as the weight for the i observation, within the #” component,

computed by weighting the incomplete data, ;4 , by the sum of the incomplete data

within the & component. That s,
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Tk _ Tk

R (2.85)
D ik
izl

The denominator in the above equation is equal to the expected proportion of the total

sample size for the ¥” component. By definition, the w;j sum to one across the

N
observations within a component, Z wik =1. Using these weights, 2 component N x N

i=1
diagonal weight matrices are constructed, with the component weights along the

diagonals and zeros on the off-diagonals,
Wy =diag(Wik, W2k, s WNK )- (2.86)
Next, 2 separate sets of weighted observations are produced by multiplying the

observations by the square roots of the weight matrices defined for each of the

components, € k* = W}(/ 28 . These sets of weighted observations will be refereed to as

the component weighted observations, since they are functions of weights determined by
specific components. The likelihood for the model parameters, given the K" component

weighted observations is
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exps —

, 12* (8}; —W/?2Xak*) (8}2 —W]iQXak*j
o
k

% *
L(ak JXk ;sk)z ,
N2 2x\N.2

(27)™ (0' )

k
(2.87)
1 *\ *
exp —T(S—Xak )Wk(e—Xak )
20'k
) Nj2( _2x\N/2
(27)" (O’k )
The log-likelihood then is
Lk x N N 2%
logL((xk Tk ;sk)=—?log(27r)—?log(0'k )
1 wV N (2.88)
ST (S—Xak ) Wk(a—Xak )
2o'k

As usual, the maximum likelihood solutions for o k* and 0']%* are found by taking the

first derivatives of the log-likelihood in equation (2.88), with respect to each of the
parameters, setting the resulting expressions equal to zero, and solving for the
parameters. The maximum likelihood estimates for the parameters of the two component
model are given in equations (2.89) and (2.91) below. The maximum likelihood
estimates of the vectors of fixed-effects parameters for the likelihood, given the weighted

observations defined by the £ component, are

-1
s (el 29 gl 2 ol 2 %] %
ok :(ka pyR Wk Xj XWk' Xy g
YIRS I E T R YA e e
- xw} (ak) Wil xw, (ak) w, % (2.89)
= (X'WeX) I xX'Wee
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When there are no fixed-effects in the model (only the intercept parameter) these

N
reduce to the same estimates derived in section 2.7.1, since Z wik =1,

i=]

> eiwig = % =l (2.90)
i=l1 Z ik
i=1

N
J—l N D &imik

N N
A=Y giwik =| D, wik
i=1 izl

Therefore, the maximum likelihood estimates for the two component means, obtained by
maximizing the likelihood based on the observed normal-mixture data, are the same as
the maximum likelihood estimates for the means, obtained by maximizing the two
likelihoods based on the " component weighted normal data. The maximum likelihood
estimates of the variance parameters for the likelihood in equation (2.87), given the
weighted observations defined by the & component, are

6-/%* = —1—(82 - W]1(/2X0Lk* )’ (82 - W]1€/2Xak*]

N 2.91)

1 %\ *
:—(s—Xak ) Wi (s—Xak )
N
When there are no fixed-effects in the model (only the intercept parameter) these reduces

to V times the variance estimates derived in section 2.7.1,

N
N ik (21 - )
Nop = Y wik (e - )* = EL— =62, (2.92)
i=l z ik
i=1
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Therefore, the maximum likelihood estimates for the two component variances,
obtained by maximizing the likelihood based on the observed normal-mixture data, are
the N times the maximum likelihood estimates for the variances, obtained by maximizing
the two likelihoods based on the #” component weighted normal data. The steps of the
EM-algorithm for maximum likelihood estimation of the parameters, including the fixed-
effects, using weights are summarized below.

First Step (1= 1):
» E -step: Starting values for l](co), #/(CO)’ and 0']%(0) are specified to compute
ﬂik(l) with equation (2.78). Component weight matrices, W](cl) , are

constructed as in equation (2.86), where the w,-k(l) are computed with equation

(2.85).

» M -step: The maximum likelihood estimates for the l/(cl) are computed with
. o | 1) (1)
equation (2.79). The maximum likelihood estimates for a; / =at\"/, and
o2) = No2"(1) are computed with equations (2.89) and (2.91 ivel
r  =Nog puted with equations (2.89) and (2.91), respectively,

from the normal likelihoods given the weighted data, e*(l) =W

[terations greater than 1 (1> 1)
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» E -step: The estimates, ﬂik(t+1), are computed with equation (2.78) using

W(t+1)

’ll(ct)’ y]((t), and O']%(t). Component weight matrices, A , are constructed

as in equation (2.86), where the w,'k(Hl) are computed with equation (2.85).

(r+1)

® M -step: The maximum likelihood estimates for the ﬂk are computed with

t+1), and Gl%(t+1) _ NU}%*(HI)

1
equation (2.79). The MLEs for ach ) = az(

are computed with equations (2.89) and (2.91) from the normal likelihoods
given the weighted data, a*(’ +1) _ Wllc/ 2(t+1)8 .

As before the EM-algorithm continues iterating through these steps until a check for
convergence has been satisfied. In the next section, the EM-algorithm with weights,
described here, is further extended to include estimation of the random-effects that might

be included in the model.

2.8. Estimation in Joint Normal-Mixture Random-Effects Model
In this chapter thus far, the normal random-effects model defined in section 2.2 was
extended to allow for the residuals to follow an M-component joint normal-mixture
random-effects distribution rather than a (unimodal) joint normal random-effects
distribution. This was accomplished in sections 2.3 and 2.4 by redefining the random-

effects model seen in equation (2.1) as y = Zp + €. For this new model, referred to as the

M-component joint normal-mixture random-effects model, the vector of residuals are no
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longer assumed to have a mean vector of zeros, but rather one determined by the

component vectors of fixed-effects, aj , and the design matrix, X . They are further

assumed to have an M-component joint normal-mixture distribution determined by the
product of the M-component univariate normal-mixture densities for the individual
residuals. This density was defined in equation (2.21). Fixed-effects were incorporated
into the model definition by modeling the component means for the residuals and setting

pi = Xag . The random-effects incorporated into the model are random subject effects.

As usual for the random subject effects, the observations between subjects are assumed to
be independent, while the observations within subjects are assumed to be correlated.

Thus, the structure of the variance covariance matrix for the vector of random subjects

effects is taken to be G = diag(ag,ag,...,ag), where o% represents the between

subjects varaince. The residuals are assumed to be independent, between and within

subjects, with component variances given by 0']% , thus the structure of the component

variance-covariance matrices for the vector of residuals is Xy = diag (O’I%,O']%,...,O'I% ) In

section 2.6 the standard maximum likelihood estimation methods used for normal
random-effects models were reviewed. The usual methods for maximum likelihood
estimation with the EM-algorithm were covered for the joint normal-mixture model
without fixed or random-effects in section 2.7.1. Then, in the following subsection,
2.7.2, extensions with fixed-effects were derived by describing the EM-algorithm with
weighted data. This was done so that an EM-algorithm can be applied on the vector of

residuals from the model with random-effects. In this section, estimation in the rwo-
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component joint normal-mixture random-effects model is described. For simplicity,

details are given for the two-component (M = 2) case.

2.8.1 Maximum Likelihood Estimation
Recall, from section 2.3, that the two-component joint normal-mixture random-effects

model defined for each subject is given by y j= Z j S jtEj and the model containing all
subjects is given by y = ZB + €. It is assumed that the vector of random-effects, B, is
N (O,G) and independent of the vector of residuals, €, which are assumed to follow a
IMX(Xay,Xay,Z1,Z3,A). The distribution of € is the two-component joint normal-
mixture density with component mean vectors, Xauj , component variance-covariance

matrices, j , k =1,2, and vectors of mixture proportion, A = (4, 43,...,4g ) , given by

S Nj
2 2
sy (8: X0, Xap,21,22,0) = [ | Hf(eij;ﬂijl,#ijz,ol ,az,lj)- (2.93)
j=li=l

where f £ij’s Hij1» ,u,-jz,az,o% A j) is the univariate normal-mixture densities for the

residuals defined in equation (2.7). For this model definition, the mixture proportion is
allowed to vary for each subject. The special case where the mixture proportion is
assumed equal for each subject is discussed in section 2.8.3. For the two-component
case, only one of the component mixture proportions needs to be estimated for each

subject, since /1]-1 = /1]- and ’1j2 =1- lj , J=1...,§. The residuals are assumed to be

independent, between and within subjects, with equal variances within each of the
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components. Thus, the variance-covariance matrices, X , are diagonal matrices with

the component variance along the diagonal and zeros on the off diagonal, given by

Ty = diag( ]% ]%, 1%) In section 2.5, it was shown that the density, and hence the

likelihood, for vector of observations, y, can not be derived by extending the arguments

in section 2.7.1 used for the vector of residuals, €, since the observations within the
subjects are now assumed to be correlated. The likelihood for the two-component joint
normal-mixture random-effects model based on the observations is equal to the joint

density (of the marginal densities) of the observations, given by

L(al,az,alz,ag,crg,l;y)=f(y)= [ 7(yIB)s(B)aB, (2.94)

where the conditional density of the observations given the vector of random-effects is

S N] 2 5
r1B)=11T11 Z}“jk¢(yijlﬂj;fuijk+ﬂj’ak)
k=1

i=1i=1[
J= (2.95)

S Nj 2 )
=I111 Zijk¢(8ij;#zy‘k’<’k)’

Jj=li=1lk=l

with &jj = Yij ~ S - To estimate the parameters for the two-component joint normal-

mixture random-effects model, the likelihood in equation (2.94) should be maximized.
Due to its intractable form, the process of maximum likelihood estimation will be carried
by using the EM-algorithm with weights and exploiting the fact that the conditional
density in equation (2.95) is the two-component joint normal-mixture density. The

weights defined in the E-step are used to compute two sets of weighted observations
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whose joint densities are determined by the product of the univariate normal random-
effects densities for the individual weighted observations. In the M-step, the likelihoods
for the weighted observations are then used, along with the distribution of the random-
effects, to obtain the overall maximum likelihoods estimates for the joint normal random-
effects model, using standard random-effects model theory.

In the next section, it will be examined how these maximum likelihood estimates
can lead to estimates of the component means and variances for the two-component joint
normal-mixture random-effects model. The maximum likelihood estimate for the
mixture proportions is determined by maximizing the conditional density in equation

(2.95), with respect to 4 ;, since they are completely specified within this density. It will

be then be conjectured that the an estimate for the random-effects variance parameter of
the two-component joint normal-mixture random-effects model can be determined by
computing a weighted average of the two random-effects variance estimates produced
from the two joint normal random-effects models. This process of maximum likelihood
estimation, using the EM-algorithm with weights, is described in more detail in the

following section.

2.8.2 EM-Algorithm for the Joint Normal-Mixture Random-Effects Model

Suppose that a random sample of N observations from S subjects, with N o j=1..S8,

S
observations taken from the j” subject, N = Z Nj,are obtained from a two-component

J=1

normal-mixture random-effects density, i =1,...,V, as defined in section 2.3. The
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observations are expressed as the sums of the predicted values for the j random

subject-effects and the residuals of the i observation from the j subject, Yij = i) € -

As mentioned in the previous section, the likelihood for the joint density of the
observations is intractable. The process of estimation, however, can be carried out by
using a weighted EM-algorithm. As usual, the EM-algorithm requires the incomplete
data to be defined. For the two-component joint normal-mixture random-effects model,
the incomplete data are defined as single indicator variables assigning each observation to

one of the two components. This can be written, £ =1,2, as

.o _1th
ik = 1, if g ek. group. (2.96)
0, otherwise

The posterior probabilities of the i" observation from the j* subject falling into the K"

component, conditioned on the j™ random-effect, is given by the expected values of the
¢jjk - In other words, E [Cijk ‘ Yij» Bj ] . This further simplifies to E [Cijk ..9,-]- il , where the

residuals are Ejj = Yij = p ;- This yields

2
A- ¢(g--;ﬂ--k,a )
JkP\ 0> Hijk Ok
E[c,-jk ‘5ij:|:P(Cijk:1’gij):”ijk= 7 . (2.97)

2
> ljk¢(€ij;ﬂzjkﬁk)
m=1

For the two component case, the subscript denoting component can be dropped, since

mij) + 72 =1. Thus, the incomplete data for the first component can be represented
with 7Tjj and the incomplete data for the second component can be represented with

1- 7jj - The incomplete data, defined in equation (2.97), are computed, within each E-
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step, by using the estimates produced in the previous M-step. As usual, for the first
iteration, starting values are specified for the parameters to determine the incomplete
data. The estimates in equation (2.97) are used to obtain the component weights. These
weights are designed in order to produce two sets of weighted observations that follow
joint normal random-effects densities. The following describes the process for obtaining
the weighted observations.

Let wjjg be defined as the K" component weight for the i observation from the

;™ subject, conditioned on the / random-effect, computed by weighting the incomplete

data, ik » by the sum of the incomplete data within the j subject and the #” component.

That is,
Tijk Zijk
wije =~k _ , (2.98)
JEON AjkN j
> Tijk
i=1

The denominator, in the above equation, is equal to the expected proportion of the sample
size for the /" subject, for the & component. By definition, within a component, the

N

Wjjk Sum to one across the observations for the j’h subject, Z Wijk = 1. The component
i=1

weight matrices are then computed as follows. First, for each subject, the component

weight matrices are defined as

Wik =diag leks'--’Wijk . (2.99)
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Next, the subject component weight matrices in equation (2.99) are combined to

produce the overall component weight matrices,
Wy, = diag (Wig,.... Wsk ). (2.100)

Then, two separate sets of weighted observations are obtained by first multiplying the

residuals by the corresponding square roots of the weights and then adding the result to

the predicted values for the ;" random subject effect, yiix = B; + &5 [wijk . With
J ik = Pj T &Mk

matrices, the vectors of weighted observations are given by
Y, =ZB+W]1(/28. 2.101)

As argued in section 2.7.2, weighting the residuals is equivalent to assuming that the

component weighted residuals follow an N-dimensional joint normal distribution, with

* . . . * 1/2 1/2 .
mean vector Xog  and variance-covariance matrix Ly =W, "Zp W, ~. Then, using
random-effects model theory, the weighted observations, Yy, are assumed to follow an
N-dimensional joint normal random-effects distribution with mean vector Xa k* and
variance-covariance matrix Vk* =7ZGZ + W}c/ 22 kW}C/ 2.

In the M-step, the likelihoods, based on the component weighted observations,

given by

1 *\' k] *
exp —-2(Yk—Xak )Vk (Yk—Xak )

L Xak*,Vk*;Yk): — . (2.102)

n 2l

Vi
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are maximized, using the methodology described in section 2.6, to obtain the

maximum likelihood estimates of the parameters ak*, Bk*, 0']%* and agk*. From

section 2.6.2, the maximum likelihood estimates for the vectors of fixed-effects

parameters are given by

: -1 ;
X vl 26 =T 1/2 ool 2% =1
ok =(X W Vi Wk/ Xj XWk/ Vi Y. (2.103)

From section 2.6.4, the methods for obtaining the maximum likelihood estimates for the

. * * . . . . * .
variance parameters, 0']% and agk , in the variance-covariance matrix V4 involve

iterative types of methods. From section 2.6.3, the predicted values, based on the

maximum likelihood estimates, for the vector of random subject-effects are given by
A X% ~ ¥ o *_1 A ¥
By =G Z'Vy (Yk—XOLk ) (2.104)

The entire process for obtaining the maximum likelihood estimates described above
involves using iterative methods within each M-step, such as the Newton-Raphson
algorithm or the EM-algorithm. These can be carried out however with standard
methodology for random-effects models included within many statistical software
packages.

The relationships between the maximum likelihood estimates obtained by
weighting the observations and the ones for the normal-mixture parameters for models
not including random-effects were described in section 2.7.2. Using a similar argument,
the estimates for the component means determined by the vectors of fixed-effects

parameters of the two-component joint normal-mixture random-effects model, ay , are



80

equivalent to the mean vectors obtained in equation (2.103) by using the likelihoods

*
based on the component weighted observations, aj . That is,

, -1 P
dkzdk*z(xw,%z ,}""lw}cf’zxj XW, Vi (2.105)

The estimates for the component variance-covariance matrices for the weighted residuals,

L , determined by the component variance parameters of the residuals for the two-

component joint normal-mixture random-effects model, 0']%, are a constant factor of the
maximum likelihood estimates for the variance-covariance matrices obtained by using the

likelihoods based on the component weighted observations, X k*- The need for a

constant factor is a consequence of weighting the data. For a design (model), with
balance across the subjects, that is, equal number of observations per subject, the factor is

N = % =N;,Vj. Foran unbalanced design across subjects, the factor is conjectured to

*
be N =

—];/— —;— i N . Itis important to understand that the estimates for X k* will be
j=1

biased downwards. This is a typical result of the maximum likelihood procedure with

random-effects in the model. Using REML to estimate the parameters of the random-

effects models within each M-step could result in parameters with less downward bias.

Further discussion can be found in section 2.10.

The maximum likelihood estimates for the mixture proportions are determined by

maximizing the likelihood for the observations, conditioned on the random-effects, with
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respectto A o since the A j are completely specified within the density of the
residuals, and not within the density of the random-effects. Recall, this likelihood is

s N
2 2
L(Xoy,Xop,Z1,Z2,08)= ] H[,lﬂp(gij;yiﬂ,o-l )+(1—/1j)¢(£ij;yij2,0'2 )}
j=li=1
(2.106)
To obtain the maximum likelihood estimates for the vector of subject mixture

proportions, A, the derivative of the log of the likelihood in equation (2.106), with

respect to 4 o is set equal to zero, and the resulting expression is solved for A j- The
first partial derivative with respect to 4 i the mixture proportion for the N
subject, j =1,..., S, of the likelihood is

2 . 2
Ny ¢(8ij;y,-j1,01 )—¢(8ij,ﬂij2,02)

S
L33

. 5 (2.107)
i jaiE| glegagof |+ (1-27)0 ey o3 |
Substituting the 7Tij into equation (2.107) yields,
S N 7T (1 T ) S N]_
i i
22| T T (1= ) =25 (1=

sua Ay (1=4) ] j2ua
s Nj_

=3 > [ - 4] (2.108)

j=li=1
S |[ )

=2 || 27 |- N
j=1]i=l

Setting equation (2.108) equal to zero,
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S s N
ZNJ-AJ: PIDIE (2.109)
j=l j=li=l

The expression in equation (2.109) is equivalent to

Ny
2. 7ij
Aj =’—=]1[—,j=1,..‘,S, (2.110)

J
giving the maximum likelihood estimate for the mixture proportion for the ;™ subject.
The maximum likelihood estimate for the vector of subject mixture proportions, A, is

then
i:(,il,...,is). @2.111)
Since one of the model assumptions for the two-component joint normal-mixture

random-effects model is that the variance for the random-effects is equal across

components, an overall estimate of 0'§ must be determined. It is proposed that the

2

b

random-effects variance estimates from the two normal random-effects models, &

may be combined by first determining a common J Ji from the predicted values of the

random-effects, 4 i computed as

A

Bj=4;B} +(1—ij)[}j2, (2.112)

as

NeLS

then calculating the estimate for o
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<2 1 A —\2
05=(S—_I)Z(ﬁj—ﬂ) : (2.113)

Jj=1
with B denoting the mean of the ,B - After estimating all of the parameters of the two-

component joint normal-mixture random-effects model, the maximum likelihood
estimates obtained in each M-step are then used in the subsequent E-steps to obtain new
values for the incomplete data. The algorithm iterates until the process converges.

The steps for determining the maximum likelihood estimates for the two-
component joint normal-mixture random-effects density using the EM algorithm with
weights are summarized below for the /* iteration.

First Step (1= 1):

» E -step: Starting values for K(O), ak(O), O'I%(O), and B(O) are specified. The
initial G;(O) is computed from B(O) with equation (2.113). The residual

vector is then determined by 8(0) =Y- ZB(O) . The ﬂij-(l) are computed,
using these starting values, with equation (2.97). The component weight
matrices, Wk(l) , are constructed from the ﬂl'j(l) , with equations (2.98) -

(2.100). Using these component weight matrices, two sets of weighted

observations are created as, Yk(l) = ZB(O) + W}:2(1)8(0) . The residuals are

assumed to follow a two-component joint normal-mixture density, the weighted
residuals are assumed to follow a joint normal density, and the weighted

observations are assumed to follow a joint normal random-effects density.
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* M -step: The estimates for the component means, component variances, and
random-effects variance, are obtained by maximizing the two separate

likelihoods, in equation (2.106), based on the two sets of weighted

observations. The component vectors of fixed-effects parameters, a k(l), for

the two-component joint normal-mixture random-effects model are equivalent
to the vectors of fixed-effects parameters obtained by maximizing the separate

likelihoods for the normal random-effects model in (2.102). The estimates for
. 2(1) * N . .

the component variance parameters, o p »are N = < times the variance

estimates obtained by maximizing the likelihoods for the normal random-

effects model in (2.102). The maximum likelihood estimate for the k(l) are
computed with equation (2.110) and (2.111) by maximizing the likelihood, in

equation (2.106), for the two-component normal-mixture model parameters
based on the residuals, 8(0). Finally, the predicted values for the two vectors

of random subject-effects, B k(l) , are determined, using equation (2.104), by

maximizing the likelihoods, in equation (2.102), for the joint normal random-

effects model parameters, given the weighted observations. The overall

vector of predicted random subject effects, [3(1), is defined with equation

(2.112), and the overall variance estimate for the random subject-effects,
ag(l), is given by equation (2.113).

[terations greater than 1 (> 1):
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s E -step: The ﬂ,-j(Hl) are determined, with equation (2.97), using the values
K(t),a (’), 0_2(t) obtained in the /" E-step. The component weight matrices,
k k p

Wk(t+1) , are constructed from the 7rij(t+1), with equations (2.98) - (2.100).

Using these component weight matrices, two sets of weighted observations are
/

created as, Yk(t+1) = ZB(t) + Wllc/ 2(t+1)8(t) .

* M -step: The estimates for the component means, component variances, and
random-effects variance, are obtained by maximizing the two likelihoods, in

equation (2.106), based on the two sets of weighted observations. The

estimates for the component vectors of fixed-effects parameters, o k(t+1), for

the two-component joint normal-mixture random-effects model are equivalent
to the maximum likelihood estimates for the vectors of fixed-effects parameters

obtained by maximizing the likelihoods for the normal random-effects model in

(2.102). The estimates for the component variance parameters, ai(Hl), are

* N . . - . . .
N = E times the maximum likelihood estimates for the variances obtained

by maximizing the likelihoods for the normal random-effects model in (2.102).

The maximum likelihood estimate for the }»(Hl)

are computed with equation
(2.110) and (2.111) by maximizing the likelihood, in equation (2.106), for the

two-component joint normal-mixture model parameters based on the residuals,
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a(t). Finally, the predicted values for the two vectors of random subject-

effects, B k(Hl) , are determined, using equation (2.104), by maximizing the

likelihoods, in equation (2.102), for the joint normal random-effects model

parameters, given the weighted observations. The overall vector of predicted

subject effects, B(Hl) , 1s defined with equation (2.112), and the overall

variance estimate for the random subject-effects, ag(Hl) , is given by

equation (2.113).
As in the previous sections, a check for convergence is performed at the end of each M-
step. One such check would be to compute the squared differences between the estimates
of the parameters in the 1" iteration and ¢ - 1 iteration. If the sum of these squared
differences is smaller than a predetermined tolerance level then the process has

converged.

2.8.3 A Special Case
A special case of the two-component joint normal-mixture random-effects model is when
the mixture proportion is not assumed to vary across subjects. The algorithm described
in the previous section can easily be modified to fit this special case. The following
describes the necessary changes. First, the weights in equation (2.98) are defined as the

incomplete data weighted by the sum of the incomplete data across all subjects,
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”ijk _ 7r,'jk
s Nj AN

2. 2 Tijk
j=1

Wik = (2.114)

i=1

The denominator, in the equation above, is equal to the expected proportion of the total
sample size, for all subjects, for the £ component. Next, the maximum likelihood
estimate for the overall mixture proportion is computed as
S s Nj
LA 2
, i1

I .

y)
=1 j=1
S

-~

i=1

(2.115)

The factor used to compute the estimates for the component variances from the maximum

likelihood estimate produced from the likelihoods based on the weighted observations
would become N N . Finally, the maximum likelihood estimates for the random-

effects variance, 6'2

5 from the two normal random-effects models may be combined by

first determining an overall vector of predicted values for the random-effects, S Iz from

the predicted values of the random-effects, S ik computed as

B =), +(1—/1)ﬂj2, (2.116)
then calculating the overall estimate for 0'§ as
S
2 1 A =\2
=— ;- , 2.117
3 27 a1

with B denoting the mean of the ,B - An alternative estimator could be computed as
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222 (1 2\ a2
G5 =455 (1 1)052. (2.118)

The EM-algorithm for this special case is demonstrated in chapter 3 with a simulation
study. Then, in chapter 4, the EM-algorithm for the general case, where the mixture
proportions are allowed to vary across subjects, is used to fit the heart rate data from the

Loneliness study. In the next section, test for the parameters are developed using

likelihood ratio based methods.

2.9. Significance Tests for the Model Parameters
Most significance testing for the model parameters can be carried out with likelihood
ratio tests. A likelihood ratio test compares the likelihoods of models including and
excluding the parameters of interest. It is well established that under the null hypothesis,
the model parameter has no effect, then twice the difference in the logs of the two
maximum likelihoods is asymptotically distributed as chi-squared with degree of freedom

equal to the difference in the number of parameters in the two models, denoted by ,1'5 .

It is important to note that the likelihood ratio test can only compare nested model
structures. In situations where the models are not nested, the significance of the model
parameters can be determined by comparing the Akaike’s information criteria (AIC) or
the Schwarz’s-Bayesian information criteria (SIC or BIC) (Brown and Prescott, 1999).
All significance testing of the component model parameters, with the exception of the
mixture proportions, for the M-component joint normal-mixture random-effects model
described in this dissertation may be conducted by means of a likelihood ratio test. For

tests concerning the mixture proportion, the types of test depends on the question of
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interest. For example, testing if the mixture proportions are equal across subjects the
model structures are nested and likelihood ratio tests can be performed. When testing if
the mixture proportion is equal to 0 or 1, that is testing the number of components in the
model, the model structures are not nested, thus AIC or BIC must be used. In this case,
this would be a test of goodness of fit of the mixture distribution.

Recall from the previous section, the overall likelihood for the two-component
joint normal-mixture random-effects model parameters, given the vector of observations,
does not have an explicit form. The EM-algorithm proposed in section 2.8 did not
require this definition for maximum likelihood estimation. The likelihood ratio tests
using the likelihood for the model parameters, given the vector of observations, would
involve indefinite integrals. Thus, methods using a conditional LRT, AIC, and BIC are
proposed.

It can be argued that likelihood ratio tests for the fixed-effects may be carried out
by means of the likelihoods based on the joint distribution of the residuals. This will be
called a conditional likelihood ratio test because the distribution of the residuals assumes
the vector of predicted random subject-effects to be fixed. The definition of this

likelihood is

s N
L(Xay,Xay,Z1,Z9,A€) I‘[

I :\

[ f¢(€ij§ﬂij1a0'12)+(l—ﬂj)¢(£y Hij2:0% )} (2.119)

This argument is made because of the form of the LRT statistic determined from the

vector of observations. For example, suppose the vector 0 is defined as the as the vector
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* .
containing all of the model parameters, and the vector 8 as the same vector minus the

fixed-effects parameters to be tested for significance,

}\.1 M
Ag As
*
] a
9= 0" = az* . (2.120)
of o?
2
o 2
; %2
o 2
o oy

Then the LRT statistic is

L(bsy)

—LTé*;_y) (2.121)

—2[log L(é;y) —logL(é*;y)jl =-2log

Now, since the likelihoods in both the numerator and the denominator are integrals, over

the random-effects parameter space, of the product of the conditional density, f (y l B),

and the marginal density, f'(B) , the likelihood ration statistic is defined

- . (2.122)
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For tests involving the fixed-effects parameters, the ratio of the conditional densities is

proposed:

flviBes))

f(y”};e*) (2.123)

The properties of this conditional likelihood ratio statistic need to be further studied; this
will be left for future research.

Tests involving the component variances for the two-component joint normal-
mixture random-effects model are limited to tests comparing the component variance to
each other and may also use the statistic proposed in equation (2.123). Future research
into different possible error structures will lead to more types of tests involving the
appropriate variance-covariance structure of the model.

The general procedure for testing random-effects parameters in a single
component normal random-effects model involves determining a confidence interval on
3

2, 2
o"+0}

the ratio where 0'2 is the between-subject variance and 0'2 + 0'§ is the total

variance. Then a confidence interval containing one would indicates that the variance
parameter for the random-effects, o%, is insignificant. This in turn indicates that the

subjects have the same mean vector and the inclusion of random-effects in the model is
unnecessary. Recall from section 2.3 that the expression for the variance of the residuals

in the two-component joint normal-mixture random-effects model is given by

var (7 ) = Ao} +(1-/1j)a§ + 45 (1-27 )y —,ul-jz)z. (2.124)
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Then, since the residuals are independent of the random-effects, the variance of the

observations is given by
2 2 2. 2
var(y,-j) = Ajo] +(1—1j)02 + 2 (1-21-)(#,-]-1 —y,-jz) vos. (2125
Then a test for the significance of 0'§ is proposed by forming a confidence interval on

the ratio of the variance of the residuals to the variance of the observations,

)
_, (2.126)

var ( Yij )
As before, a confidence interval containing one indicates that the inclusion of random-

effects is unnecessary. Forming this confidence interval could be complex, however,

since obtaining the standard errors for the variances and covariances is difficult. An
alternative method is suggested as follows. In order to test the significance of 0'§ in the

two-component joint normal-mixture random-effects model, it is suggested that

simultaneous confidence intervals be produced for both components, — - Then if

both confidence intervals include the value one, then it will be concluded that the
random-effects variance parameters are insignificant. Because this is a simultaneous
confidence interval, appropriate adjustments for the multiple comparisons should be
made.

The methods for testing, suggested in this section, are demonstrated in chapters 3

with a simulation study and in chapter 4 with the Loneliness data.
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2.10. Summary
In this chapter, the M-component joint normal-mixture random-effects model was
defined. Since many of the definitions and methodology were borrowed from random-
effects model theory as well as normal-mixture model theory, these two types of models
and the methods used for estimating their model parameters were reviewed in sections
2.2,2.6,and 2.7. The methodology used for estimation of the M-component joint
normal-mixture random-effects model parameters was formulated by first extending the
joint normal-mixture model to include fixed-effects by defining weights determined by
the incomplete data. Next, the random-effects were incorporated by further extending the
methodology to condition on the random-effects. Although estimation based on the
conditional likelihood does introduce some uncertainty into the estimate of variability of
the random subject effects, the effect on the remaining model parameters is negligible. In
the next two chapters, this model will further be explored. First, however, it is necessary
to discuss some of the benefits and limitations of the proposed methodology for
estimation in the two-component joint normal-mixture random-effects model.

The most obvious benefit of the algorithm proposed in section 2.8 is its elegance
and simplicity. The precise definition of the weights allows us to define weighted
observations which are assumed to follow joint normal random-effects densities. The
likelihoods, based on the weighted observations are standard and the resulting maximum
likelihood solutions are explicitly defined and well-studied. The estimates produced by

maximizing these likelihoods then directly lead to the component estimates for the two-
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component joint normal-mixture random-effects model parameters through the EM
theory. The algorithm is easily implemented in statistical software packages, such as
SAS, because the existing random-effects estimation procedures can be utilized within
the M-steps.

With regards to estimation procedures, this method is attractive since the
alternative is to use Newton-Raphson, which involves indefinite integrals. This can be
tedious and the implementation can be difficult. Xu and Hedeker proposed this method
of estimation for their random-effects model which assumed the residuals to be normally
distributed and the random-effects to be normal-mixture. Although thorough, their work
is difficult to implement making it highly unattractive.

The extension for fitting normal-mixtures with fixed-effects is significant in that
this is the first attempt at modeling the component means in the mixture density. The
algorithm, which is a special case of the EM-algorithm for the two-component joint
normal-mixture random-effects model, reduces to the usual estimates obtained for the
mixture model when no fixed-effects are included. This proposed EM-algorithm with
weights is again easily implemented and now offers researchers and statisticians more
flexibility when modeling normal-mixture models with fixed-effects. The extension with
random-effects then further allows researchers to include random-effects in their model.
Although the random-effects discussed thus far have been subject effects, they could be
visit effects for data taken from a single subject across several visits. The inclusion of
both a visit and a subject effect is left for future research due to the canonical correlation

structure of the variance-covariance matrix for the observations. It is anticipated that the
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methodology will be extended by using some type of multivariate density and
likelihood definition.

Although the methods proposed in this dissertation have many benefits, there are
several limitations worth mentioning. The main limitation, of the proposed method for
estimation, is that the algorithm does not maximize the overall likelihood, but rather the
conditional likelihood of the observations conditioned on the random-effects. As
suggested earlier, the estimation based on the conditional likelihood does introduce some
uncertainty into the estimate of variability of the random subject effects, but the effect on
the remaining model parameters is negligible. This effect is further explored in the
simulation study in the next chapter. Furthermore, the conjectures regarding the overall
estimate for the variance of the random-effects has not been proven.

A limit of the theory thus far is the assumption of independence in the residuals.
This assumption is too restrictive. The attractiveness of the random-effects model is the
ability to fit a wide variety of covariance structure to the residuals, along with the
structures for the random-effects. This dissertation has limited the random-effects model
with the assumption of independence in the residuals, allowing correlations to enter the
model only through the random-effects. The heart rate interval data that inspired this
dissertation most definitely violates this independence assumption. Although the
applications using this model for these types of data are still unfinished, this dissertation
begins the work towards the more appropriate model definition. Until future work into

more complex structure is completed, it is suggested that time-series methodology be
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applied before the EM-algorithm is used, to remove the lower frequency variations in
the data.

In the following two chapters, the proposed method of estimation for the two-
component joint normal-mixture random-effects model using the EM-algorithm with
weights will be demonstrated. In chapter 3, a simulation study is performed to explore
the various conditions under which this method may be utilized. Then, in Chapter 4, the

algorithm is applied to the Loneliness data introduced in section 1.5.
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3 Simulations

In this chapter, properties of the methodology for estimation proposed in Chapter 2 are
studied using simulations. The simulation study is designed to provide an insight into the
feasibility of the model, the magnitudes of the bias and standard errors in the estimation
of the parameters, under different scenarios defined by the parameter values. The
simulation of the data and the subsequent estimation using the EM algorithm proposed in
section 2.8 will be performed with SAS v.9.1. The estimates obtained from the EM
algorithm will then be examined through plots and factorial analyses using JMP 6.0. The

data used within this chapter can be found on the data CD (see Appendix 7.4).

3.1. Simulating Two-Component Normal-Mixture Random Effects Models
In this section, the various factors used in the simulation study, along with the levels of
the factors, are defined and the method used to simulate the two-component normal-
mixture random-effects model is described. Although the methodology proposed in
Chapter 2 is applicable in a wide range of research applications, in this dissertation, HRV
data introduced in Chapter 1 is of interest. Therefore, the parameters for the simulated
data sets created are derived from actual adult RR-interval (HRV) data. For simplicity,
only a two-component normal-mixture distribution with one random subject effect will
be considered. It is further assumed that the mixture proportion is equal across all
subjects. Define the parameter vector 0 to be the vector containing all of the parameters

defining the two-component normal-mixture random-effects density. That is,
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ez(ﬂl,yz,az,ag,ag,z . G.1)

Then the parameter estimates obtained from the weighted EM-algorithm are examined
for 0 obtained over a variety of conditions. Primarily, the focus is in studying how

changes in the mixture proportion, A (Factor 1), the percentage overlap between the two
components, POV (Factor 2), the magnitude of the between subject variability, 0'§

(Factor 3), the total number of subjects, S (Factor 4), and the total number of observations

per subject, N Ji (Factor 5), affect the bias and mean squared error of the estimators. The

levels of these factors are listed below.
» Factor 1: Th ree levels for the mixture proportion, A4, namely 0.5, 0.6, and 0.7.
» Factor 2: T wo levels for the percentage overlap, POV, 10% or 20%.
» Factor 3: T wo levels of the between subject variance factor, BSF, 0.5 or 1.5,

indicating when the between subject variability, ag , is defined as 0.5 or 1.5 times

the total within subject variability,

2
o2 =202 +(1-2) o5 + A(1-2) (41 - 112)*.

5 (3.2)

This factor is described in more detail below.
* Factor 4: Th ree levels for the number of subjects, S, namely 5, 10, and 20.

» Factor 5: T wo levels for the number or observations within subject, N i namely

100 and 200. Here, N Ji is set equal for all subjects to simplify the simulation

process.
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Twelve different conditions on the first three factors are used to simulate the data for
the two-component normal-mixture random-effects density such that:

* The first component me an is fixed arbitrarily at g =70.

s The components vari ance, 0'12 and 0% , are both fixed at 25.

s Dependin g on the percentage of overlap, 10% or 20%, the second component

mean is set to py =86.44 or uy =82.82, respectively, determined by the fixed

values of 1, 0'12, and 0% . This is described in more detail in the following

paragraphs.
To understand the percent overlap factor, POV, consider the pictures in Figure 4 and
Figure 5, using 10% and 20% as the POV, respectively.

Figure 4: 10% Overlap

POV=10

N(u1,6%) N(g,0%)

3 POI Ha
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Several distributions are displayed in each figure. The blue, red, and green lines
represent two-component normal-mixture densities with equal component variances

(0'12 = 0% ) and mixture proportions 4 =0.5, 1 =0.6,and A =0.7, respectively. The

two black lines represent the two mixing normal densities. The light grey shaded region
represents the area under the first normal density for values larger than the point of
intersection (POI) of the two mixing normal densities. Similarly, the dark grey shaded
area represents the area under the second normal density for values smaller than the POI.

Figure 5: 20% Overlap

POV=120

N(w.0%) N(uz.0%)

H POl H2

Without loss of generality, in the simulation study the component variances will be

assumed to be equal ( 0'12 = og ) In that case, POl = (1 + 42)/2 . If the component

variances are not equal (0'12 # a% ) , then the POI would be a weighted average of the
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two component means. When the mixture proportion is 0.5, the overall mixture

mean, u = Ay + (1 - /1) M2, coincides with the POI. As the mixture proportion increases

from 0.5 this mean will approach the first component mean. Similarly, as the mixture
proportion decreases from 0.5, the overall mixture mean will approach the second
component mean. The overall mixture mean can be interpreted graphically as a point of
inflection in the mixture density. There are two points of inflection in the two-
component normal-mixture density that lie between the two component means. The first

is determined by the overall mixture mean and the second is determined by
(1—/1)#1 + Au.

The sum of the light and dark grey regions in either Figure 4 or Figure 5 is
defined as the percent overlap (POV). In the simulations, the value of the second

component mean is then determined by fixing the value of the first component mean and

specifying a percentage of overlap between the two mixing normal distributions. Given

4 and 0‘12 , the area shaded in light grey is 1— P(Z <(m-m) / 20'12 ) . Similarly,

given uy and a%, the area shaded in dark grey is P(Z <(4 -12) / 20'% ) Then, given

the POV, u» is obtained by solving

1—P(Z < (2 - )/2012)+P(Z < (1 —;12)/20'22) = POV. (3.3)

2

For the simulations, when 24 =70, 0'12 =25, and o5

=25 the values y» =86.44 and

Hp =82.82 satisfy the equation in (3.3) for 10% and 20% POV, respectively. As the
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percentage of overlap increases, the distance between the two component means
decreases.

The factor indicating the between subject variance factor, BSF, represents the two

conditions explored for the amount of between subject variability. For example, when

BSF = 0.5, the magnitude of the between subject variability, O'g-, is half the magnitude of

the total variability exhibited within the subjects, o2, Taking A =0.5, 14 =70,

M1y =86.44, 0'12 =25, and cr% =25, the values og =46.28 and 0'§ =138.85 satisfies

the equation in (3.2) for BSF = 0.5 and BSF = 1.5, respectively.

Now, using the five factors described earlier, 12 different parameter vectors are
obtained in this fashion. The values obtained for the 12 different parameter vectors are
used to simulate the data are summarized in Table 2.

Table 2: Simulation Parameters

10 % Overlap | 20 % Overlap
o-§ =(0.5) o2

A=0.5 (70,86.44,25,25,46.28,0. 70,82.81,25,25,33.01,0.5)'

5)
2=0.6 | (70,86.44,25,25,44.93,0.6)
)!

A=0.7 | (70,86.44,25,25,40.88,0.7 70,82.81,25,25,29.73,0.7)

ag =(1.5 o2

2=0.5 | (70,86.44,25,25,138.85,0.5) | (70,82.81,25,25,99.04,0.5)"
(

(
(70,82.81,25,25,32.19,0.6)
(
)

A=0.6 | (70,86.44,25,25,134.80,0.6) | (70,82.81,25,25,96.57,0.6)
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A=0.7 | (70,86.44,25,25,122.64,0.7) | (70,82.81,25,25,89.19,0.7)

The five factors and various levels lead to a 3% 23 factorial design with 72 factor
combinations. For each of these 72 factor combinations, 100 data sets are then simulated.
The methods used to simulate the data are briefly described below. A more thorough
explanation can be found in Appendix 7.2 along with the SAS code used to generate the

7200 data sets.

For a specified parameter vector 0 = ( 112, 0'2 ,0'3 ,0'§ , l) and vector of

simulation factors, F = (N > S) , a data set is simulated by first generating a random

sample of Ujj > Ejfl and £jj25 i= 1,...,Nj, j=1..,S from a uniform density, a normal

density with mean g4 and variance o2 , and a normal density with mean x9 and

variance 0%, respectively. In addition, to include a random subject effect, the values

values, S Iz j=1..,8,are drawn from a normal density with mean zero and variance

O'g. Then, the random normal-mixture deviates, Ejj > with component means, x4 and

M), component variances, 0'12 and 0"22, and mixture proportion, A, are generated as

follows:

gijl, ifuj; <A
gij =

€2 iful'j >1
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Finally, to obtain the observations, Yij » from the two-component normal-mixture
random-effects density, the deviates gjj are added to the random subject effects, S -
(See Appendix 7.2 for SAS code and further details). An example of a histogram of the

simulated data set using the parameter vector 0 = (70,86.44,25,25,46.28,0.5)' ,

indicating 10% POV and 0.5 BSF, and the simulation factor vector F = (200, 20)' is

displayed in Figure 6 (specifically the 24™ simulated data set from the 100).

Figure 6: Simulated RRI Data - All Subjects
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The histogram in Figure 6 is a good example of how the data can be deceiving when the
subject effects are not taken into account. The histogram in Figure 6 contains an example
of simulated data from all 20 subjects. A simple glance at the histogram could indicate
these data do not come from a mixture of normal densities but instead from a single
normal density. However, if the histograms are viewed by subject, a very different story

is observed. Histograms of simulated RR-interval data for two separate subjects from the
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same data set in Figure 6 are shown in Figure 7. Examination of the two histograms
in Figure 7 indicates a mixture density for both subjects with different component means
for each subject (indicative of a random subject effect).

Figure 7: Simulated RR-Interval Data — Subject 1 and Subject 17
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After simulating the data sets for a particular combination of 6 and F, the

proposed EM-algorithm is applied to each of the 100 data sets and the parameter

estimates are obtained. This is repeated for each of the 72 combinations in the 32 %23
factorial design. The EM-algorithm, written in SAS, along with a thorough explanation
of the code, can be found in Appendix 7.3. As explained in chapter 2, initial values have
to be provided for the EM-algorithm. The following describes the methods used for
determining initial values for each of the parameters.

For the mixture proportion, a logical choice for the starting values is 0.5. For the
first and second component means, a simple method for obtaining reasonable starting
values is to compute the 25% and 75% quartiles of the data, respectively. Starting values

for the variance parameters could be obtained by fitting a single-component normal
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random-effects model (with a random intercept for each subject). The estimate for
the between subject variance provides a decent starting value for the between subject
variance in the two-component normal-mixture random-effects model. Then, half of the
estimate for the within subject variance could be used as the starting values for both the
component variances. Since the EM-algorithm is quite robust in terms of initial values,
the above suggestions are reasonable.

Each execution of the EM-algorithm produces a vector of parameter estimates,

6= ( M, ,[12,6'12 , 6'% , 6'%, 4| upon convergence. Appendix 7.4.1 contains a file with all

7200 vectors of parameter estimates. Cumulative sums and sums of squares for the
elements of this vector are computed for each combination of simulation factors, over the
100 runs. For each combination, the mean and variance is stored (see Appendix 7.4.2).
The bias and MSE of the 72 averaged estimates are then computed. The bias is defined
as the difference between the mean (of the 100 simulations) and the true parameter value.
The true parameter values are specified by the parameters in the vector 0, given in Table
2. The MSE is then defined as the sum of the squared bias and the variance (of the 100

simulations).

3.2. Presenting Results from the Simulation Study
For each of the parameters estimated by the EM-algorithm, a graph of the squared bias
versus the mean squared error (MSE) of the 72 combinations will be plotted. From the
graph, several conclusions are then drawn regarding the squared bias and the MSE of the

particular parameter being examined. These graphs provide a visual interpretation of the
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estimates across the varying conditions. The same scales for the squared bias and the
MSE will be used for the two component means (and variances). This will aid in
interpreting the estimates across the components. Since there are numerous factor
combinations, in order to identify relevant factors, a (single replicate) full-factorial

analysis is performed using absolute bias and MSE as the outcome variables. The

32 %23 full-factorial design includes the overall mean (intercept), the 7 design effects
listed above, the 19 two-way interaction effects, the 25 three-way interaction effects, the
16 four-way interaction effects, and the 4 five-way interaction effect, for a total of 72
effects.

Several transformations on the response variables (absolute bias and MSE) are
considered for each of the 12 models in order to improve the fit of the models and to
reduce violations in the normality and constant variance assumptions for the full-factorial
model. A common method for determining the most appropriate transformation is the
Box-Cox Procedure which essentially determines the best power transformation of the
response variable given the data (Myers and Montgomery, pp 260-264). The (single-
replicate) full-factorial model lacks the degrees of freedom to estimates the residual sums
of squares necessary for the Box-Cox Procedure. Thus, a practical approach is to drop
the 4 five-way interaction effects, assuming their effects to be negligible, and combining
their mean squares to estimate the sums of squares for the residuals (Myers and
Montgomery, pp 104). These reduced models are then used to determine the best
transformations for the response variables. The Box-Cox Procedure, used in JMP,

chooses the value Ag in the interval (-2, 2) which minimizes the residual sums of
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squares. This is equivalent to performing a maximum-likelihood procedure to

estimate Agc . Although any real value in the interval (-2, 2) could be estimated, the
choices for Agc will be limited to 0, ', 1, or 2, relating to the natural log, square root,

identity, or the square transformations, respectively. The same transformation for the
bias (or MSE) of the two component means (or variances) will be used so that
conclusions may be drawn across the components. After determining the best
transformation, the full-factorial is fit and the factor effects are examined.

The primary goal of this factorial analysis is to identify factor combinations that
are most significantly different from the other factors. Since the saturated (single-
replicate) design does not allow tests of significance, instead, a method attributed to
Daniel (1959) is suggested. This method suggests plotting the estimates with a normal
probability (quantile) plot. Since the effects are still expected to exhibit some assumption
violations, the effect estimates are first orthogonalized, to ensure they are uncorrelated,
and then standardized, to ensure equal variance. Negligible effects have a standard
normal distribution and tend to fall along a straight line. Important effects, however, will
exhibit large departures from this straight line.

The software JMP uses a reference cell parameterization when fitting the full-
factorial model. This results in 72 combinations of the various factor levels. The
reference cell for each factor is the highest level. These are listed in Table 3.

Table 3: Reference Cells

Factor effect | Reference cell
A 0.7
POV 20
BSF 1.5
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S 20
N 200

The estimates for the effects are then the estimates for the difference between the effect

and the reference cell. For example, the estimate for the effect /1(0.5) x POV(10)

represents the difference between the average response for the case where 4 =0.5 and
POV =10 and the case where A =0.7 and POV =20. When interpreting the effects
from a model with a reference cell parameterization, conclusions are drawn between the
effect and its reference cell.

In section 3.4 the results are presented. This will be done by first presenting the
results from the 12 full-factorial models for bias and MSE. The methods for obtaining
the results from the full-factorial models will be demonstrated here with the model for the
absolute bias of the (estimates of the) mixture proportion, 2. Then, a subsection for each
of the six parameters is given. Within each subsection, the scatter plot for the particular
parameter of interest is displayed. The graphs and the results from the factorial analyses
are then discussed. The results presented in section 3.4 are then interpreted in section
3.5. First, however, a legend used for the scatter plots is described in the next section in

detail.

3.3. Legends for the Squared Bias versus MSE Plots
The legend described in this section relates to the six scatter plots seen in section 3.4

(Figure 10, Figure 12, Figure 15, Figure 18, Figure 21, and Figure 24). Each plot

’
represents a separate parameter in the vector 0 =|{ 4, ,[12,6'12 ,6‘% ,&g,/{) . Fora
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particular parameter, the squared bias versus the MSE is displayed for each of the 72
averages of the parameter estimate. Recall, the 72 averages represent the averaged
estimates for the 100 runs from each of the 72 varying conditions described in section
3.1. Due to the amount of information contained in each graph, several colors, shapes,
and sizes are used in order to distinguish the combinations and highlight their differences.
Below is a thorough description of the legend used for these six graphs.

= Data simulated with a tru e mixture proportion of 4 =0.5 are shown in BLUE.

* Data simulated with a true mixture proportion of A =0.6 are shown in RED.

* Data simulated with a tru e mixture proportion of A = 0.7 are shown in GREEN.

* Data simulated with 10% overlap and og = %az are shown with DIAMONDS.

s Data simulated with 10% overlap and ag = 30_2 are shown with SQUARES.

= Data simulated with 20% overlap and ag = %(12 are shown with TRIANGLES.

= Data simulated with 20% overlap and ag = %az are shown with CIRCLES.

= Data simulated with 100 observations per subje ct are shown with HOLLOW points.
= Data simulated with 200 observations per subje ct are shown with SOLID points.

* Data simulated with 5 subjects are sho wn with SMALL size points.

* Data simulate d with 10 subjects are shown with MEDIUM size points.

* Data simulated with 20 subjects are sho wn with LARGE size points.

The legend, used for all six plots, is displayed in four parts:
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3.4. Results
In this section the results from the simulations are presented for the six parameters

!

estimates in the vector 0 = ( H> 1D, 0'12 , og , ag,/l . The estimates of the bias and MSE

for all the factor combinations are tabulated. This table is primarily for reference and
therefore will be consolidated on the data CD (see Appendix 7.4.2). For facilitating
interpretations of the results, scatter plots and normal quantile plots of factor estimates
from a full-factorial model are utilized. A separate sub-section for each of the parameters
is given so that the all the information could be better organized.

Fitting the full-factorial model is now demonstrated for the bias of the estimate

for the mixture proportion, 4. The absolute value of the bias is fit as the response
variable (in order to make use of transformations such as the log and square root). The
Box-Cox procedure for the reduced factorial model indicates a square-root transformation
on the response (absolute bias). The full-factorial model includes 72 combinations of the
various levels of the 5 factors discussed in sections 3.1 and 3.2. Using the reference cell
parameterization, 72 factor effects are estimated with the model. A normalizing
transformation is then applied to the effect estimates to make them uncorrelated
(orthogonal) and have equal variance (standardized). The normal quantiles of the
normalized effect estimates are determined and then plotted against the normalized effect
estimates and shown in the example Figure 8. The normal quantiles along with the
untransformed, orthogonalized, and standardized effect estimates are found on the data

CD (see Appendix 7.4.3).
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Figure 8: Normal Quantile Plot of Effect Estimates
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From the normal-quantile plot in example Figure 8, the important effects that emerge

from this analysis are the main effects, 4(0.5) and POV(10), and the 2(0.5) x POV(10)

interaction effect.
The main effects do not have much meaning when they are involved in

interactions, thus interpretations must be made through the interaction effect. The

interaction effect A(0.5) x POV(10) indicates that the effect of decreasing the mixture

proportion from 0.7 (the reference cell) to 0.5 and the POV from 20% (the reference cell)
to 10% contributes to large decreases in the (square root of the) absolute bias. The least
squares (LS) means of the response (square root of the absolute bias) for the various
levels of the mixture proportion (lambda) are plotted in Figure 9 with separate lines

indicating the levels of POV.
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Figure 9: LS Means Plot (square root) for Bias (i)
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From the LS means plot in Figure 9, it is observed that the (square root of the) absolute
bias increases as the mixture proportion increases from 0.5 regardless of the value for
POV. However, the increase is more pronounced (nearly 3 fold) when the POV is 20%
as opposed to 10%.

The results from the 12 full-factorial analyzes for the bias and MSE are displayed
in Table 4 and Table 5, for each parameter, respectively. The transformations determined
from the respective Box-Cox Procedures are also listed in these tables. In each table, a
separate row is designated for each of the six parameters being estimated with the EM-
algorithm in the two-component normal-mixture random-effects model. For example, the

first row in the bias table (Table 4) refers to the full-factorial model with the absolute bias

A

of the estimates for the mixture proportion, A, as the response, relating to Figure 8.
These tables display the effects in the order of most importance to least importance.
Since a reference cell parameterization is used, the level of the effect is displayed in

parentheses.
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Table 4: Full-Factorial Results for Bias

Bias
Parameter | Transformation Significant Effects
y) Square Root | 4(0.5), POV(10), 2(0.5) x POV(10)
Mn Square 2(0.5), POV(10)
75 Square 2(0.5), POV(10),1(0.5) x POV(10)
&7 Square POV(10), 2(0.5)
63 Square POV(10), 2(0.5)
&g Square-Root S(5), BSF(0.5), BSF(0.5) x S(5), S(10)
Table S: Full-Factorial Results for MSE
MSE
Parameter | Transformation Significant Effects
A Log 2(0.5), POV(10),
M Log S(5), BSF(0.5)
%) Log S(5), BSF(0.5), 1(0.5)
67 Log POV(10), 2(0.5)
63 Log POV(10), (0.5)
6'§ Log BSF(0.5), S(5), POV(10)
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The results given in Table 4 and Table S are discussed in conjunction with the scatter

plots in the next six subsections.

3.4.1 Mixture Proportion (/i)

A

The bias and MSE of the estimates for the mixture proportion, A, across a variety of

conditions, are presented in Figure 10. The figure displays a scatter plot of the squared

bias versus the MSE for each of the estimates of the mixture proportion across the 72

factor combinations.

Figure 10: Mixture Proportion (i) — Bias® versus MSE
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The scatter plot in Figure 10, suggests the following.

i.) The bias and MSE both decrease as A decreases from 0.7 (green) to 0.6 (red) to 0.5

(blue).
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ii.) When A is 0.6 (red) or 0.7 (green,) the bias and MSE both decrease as POV

decreases from 20% (diamonds and squares) to 10% (triangles and circles), .

iii.) The remaining factors, BSF, S, and N J do not seem to have a substantial effect on

changes in either the bias or the MSE.
The full-factorial analysis for the (square root of the absolute) bias, discussed in

depth at the beginning of section 3.4, indicates that the important effects contributing to

large changes in the bias are 1(0.5), POV(10), and 1(0.5) x POV(10). The LS means

plot in Figure 9 suggests that the (square root of the) absolute bias increases as the
mixture proportion increases from 0.5 to 0.7 regardless of the value for POV. However,
the increase is more pronounced when the POV is 20% as opposed to 10%.

The results from the full-factorial model for the (log of the) MSE, displayed in the

first row of Table 5, suggest that the important effects contributing to large changes in the

(log of the) MSE are 4(0.5) and POV(10).

Figure 11: LS Means Plot for (log) MSE (,1)
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The least squares (LS) means of the (log of the) MSE for the mixture proportion
(lambda) are plotted in Figure 11 with separate lines indicating the levels of POV. From
this LS means plot, is observed that the MSE increases as the mixture proportion
increases from 0.5 regardless of the value for POV. However, the increase is more

pronounced when the POV is 20% as opposed to 10%.

3.4.2 First Component Mean (/11 )

The bias and MSE of the estimates for the mixture proportion, / , across a variety of

conditions, are presented in Figure 12. The figure displays a scatter plot of the squared
bias versus the MSE for each of the estimates of the first component mean across the 72

factor combinations.

Figure 12: First Component Mean () — Bias® versus MSE
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The scatter plot in Figure 12 suggests the following.
i.) The (squared) bias decreases as A decreases from 0.7 (green) to 0.6 (red) to 0.5

(blue).

ii.) The (squared) bias decreases as POV decreases from 20% (triangles and circles)
to 10% (diamonds and squares).

iii.) The MSE decreases substantially as S is increased from 5 (small) to 10
(medium) and a bit more as § increases from 10 (medium) to 20 (large).

iv.) The MSE decreases as BSF decreases from 1.5 (diamonds and triangles) to 0.5
(squares and circles).

v.) The factors BSF, S, and N b do not seem to have large effects on the (squared)

bias.

vi.) The factors A, POV, and N b do not seem to affect the MSE.

The results from the full-factorial model for the (square of the) absolute bias,

displayed in the second row of Table 4, suggest that the important effects contributing to

large changes in the (square of the) absolute bias are /1(0.5) and POV(10). LS means

plots of the (square of the) absolute bias for the various levels, namely, the mixture
proportion (lambda) and the percentage of overlap are shown in Figure 13, panels a.), and
b.), respectively. From these LS means plots in, it is observed that the (square of the)
absolute bias decreases as the mixture proportion decreases from 0.7 to 0.5 or the percent

of overlap decreases from 20% to 10%.
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Figure 13: LS Means plot for (square) Bias (/)
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The results from the full-factorial model for the (log of the) MSE, displayed in the
second row of Table 5, indicate that the important effects contributing to large changes in
(the log of) the MSE are S(5) and BSF(0.5). LS means plots of the (log of the) MSE for
the various levels, namely, the number of subjects and the between subject variance

factor are shown in Figure 14, panels a.) and b.), respectively.

Figure 14: LS Means Plot for (log) MSE ( [11)
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From the LS means plots in Figure 14, it is observed that the (log of the) MSE
decreases as the number of subjects increases from 5 to 20 or the between subject

variance factor decreases from 1.5 to 0.5.

3.43 Second Component Mean (/)

The bias and MSE of the estimates for the mixture proportion, /7, across a variety of

conditions, are presented in Figure 15. The figure displays a scatter plot of the squared
bias versus the MSE for each of the estimates for the second component mean across the

72 factor combinations.

Figure 15: Second Component Mean ( /}2) — Bias® versus MSE
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The scatter plot in Figure 15 suggests the following.
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i.) The (squared) bias increases as 4 decreases from 0.7 (green) to 0.6 (red)
to 0.5 (blue).

ii.) The (squared) bias increases as POV decreases from 20% (triangles and
circles) to 10% (diamonds and squares). These decreases become more
pronounced as A decreases from 0.7 (green) to 0.5 (blue).

iii.) The MSE decreases as S is increased from 5 (small) to 10 (medium) to 20
(large).

iv.) The MSE decreases as BSF decreases from 1.5 (diamonds and triangles) to
0.5 (squares and circles).

v.) The MSE decreases as A increases from 0.5 (blue) to 0.6 (red) to 0.7 (green).

The results from the full-factorial model for the (square of the) bias, displayed in

the third row of Table 4, suggest that the important effects contributing to large changes

in the (square of the) bias are 1(0.5), POV(10), and 1(0.5) x POV(10).

Figure 16: LS Means Plot for (square) Bias (/)
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The least squares (LS) means of the response (square of the) bias for the various levels of

the mixture proportion (lambda) are plotted in Figure 16 with separate lines indicating the
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levels of POV. From the LS means plot in Figure 16, it is observed that the (square
of the) bias decreases as the mixture proportion increases from 0.5 to 0.7, regardless of

the value for POV. However, the decrease is more pronounced when the POV is 20% as

opposed to 10%.

The results from the full-factorial model for the (log of the) MSE, displayed in the

third row of Table 5, indicate that the important effects contributing to large changes in

(the log of) the MSE are S(5), BSF(0.5), and /1(0.5).

Figure 17: LS Means Plot for (log) MSE (/1)
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The LS means plots of the (log of the) MSE for the various levels, namely, the
number of subjects, the between subject variance factor, and the mixture proportion, are
shown in Figure 17, panels a.), b.), and c.), respectively. From these LS means plots, it is
observed that the (log of the) MSE decreases as the number of subjects increases from 5
to 20, the between subject variance factor decreases from 1.5 to 0.5, or the mixture

proportion increases from 0.5 to 0.7.

3.4.4 First Component Variance (6'12)

The bias and MSE of the estimates for the mixture proportion, 6'12 , across a variety of

conditions, are presented in Figure 18.

Figure 18: First Component Variance (6’12) — Bias® versus MSE
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The figure displays a scatter plot of the squared bias versus the MSE for each of the
estimates of the first component variance across the 72 factor combinations. The scatter
plot in Figure 18 suggests the following.
i.) The squared bias and the MSE both decrease as POV decreases from 20%
(triangles and circles) to 10% (diamonds and squares).
ii.) The (squared) bias and the MSE both decrease as 4 decreases from 0.7
(green) to 0.6 (red) to 0.5 (blue). These decreases are more pronounced when
POV is 20% (triangles and circles) as opposed to 10% (diamonds and
squares).

iii.) The factors BSF, S, and N Ji do not seem to affect the (squared) bias or the

MSE.
The results from the full-factorial model for the (square of the) bias, displayed in

the fourth row of Table 4, suggest that the important effects contributing to large changes

in the (square of the) bias are POV(10) and 2(0.5). LS means plots of the (square of

the) bias for the various levels, namely, the percentage of overlap and the mixture
proportion are shown in Figure 19, panels a.) and b.), respectively. From these LS means
plots, it is observed that the (square of the) bias increases as the percentage of overlap

increases from 10% to 20% or the mixture proportion increases from 0.5 to 0.7.



126

Figure 19: LS Means Plots for (square) Bias (6'12)
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The results from the full-factorial model for the (log of the) MSE, displayed in the

fourth row of Table 5, suggest that the important effects contributing to large changes in

the (log of the) MSE are POV(10) and A(0.5). LS means plots of the (log of the) MSE

for the various levels, namely, the percentage of overlap and the mixture proportion

(lambda) are shown in Figure 20, panels a.) and b.), respectively.

Figure 20: LS Means Plot for (log) MSE (6'12)
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From these LS means plots, it is observed that the (log of the) MSE increases as the
percentage of overlap increases from 10% to 20% or the mixture proportion increases

from 0.5t0 0.7.

3.4.5 Second Component Variance (6’%)

The bias and MSE of the estimates for the mixture proportion, o”% , across a variety of

conditions, are presented in Figure 21. The figure displays a scatter plot of the squared
bias versus the MSE for each of the estimates of the second component variance across

the 72 factor combinations.

Figure 21: Second Component Variance (&% ) — Bias® versus MSE
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The scatter plot in Figure 21 suggests the following.
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1.) The squared bias and the MSE both decrease as POV decreases from 20%
(triangles and circles) to 10% (diamonds and squares).

ii.) The (squared) bias and the MSE both decrease as A increases from 0.5 (blue) to
0.6 (red) to 0.7 (green). These decreases are more pronounced when POV is
20% (triangles and circles) as opposed to 10% (diamonds and squares).

iii.) The (squared) bias and the MSE both seem to show minor decreases as S
increases from 5 (small) to 10 (medium) to 20 (large).

iv.) The factors BSF and N b do not seem to affect the (squared) bias or the MSE.

The results from the full-factorial model for the (square of the) bias, displayed in

the fifth row of Table 4, suggest that the important effects contributing to large changes

in the (square of the) bias are POV(10) and /1(0.5). LS means plots of the (square of the)

bias for the various levels, namely, the percentage of overlap and the mixture proportion

are shown in Figure 22, panels a.) and b.), respectively.

Figure 22: LS Means Plots for (square) Bias (6’%)
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From the LS means plots, it is observed that the (square of the) bias decreases as the
percentage of overlap decreases from 20% to 10% or the mixture proportion increases
from 0.5 to 0.7.
The results from the full-factorial model for the (log of the) MSE, displayed in the

fifth row of Table 5, suggest that the important effects contributing to large changes in

the (log of the) MSE are POV(10) and 4(0.5). The LS means plot of the (log of the)

MSE for the various levels, namely the percentage of overlap and the mixture proportion

are shown in Figure 23, panels a.) and b.), respectively.

Figure 23: LS Means Plots for (log) MSE (&2)
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From the LS means plot in Figure 23 it is observed that the (log of the) MSE decreases as

the POV decreases from 20% to 10% or the mixture proportion increases from 0.5 to 0.7.
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3.4.6 Between Subject Variance (&g)

The bias and MSE of the estimates for the mixture proportion, 6'§ , across a variety of

conditions, are presented in Figure 24. The figure displays a scatter plot of the squared
bias versus the MSE for each of the estimates for the between subject variance across the

72 factor combinations.

Figure 24: Between Subject Variance ( Ag) — Bias® versus MSE
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The scatter plot in Figure 24 suggests the following.
i.) The MSE and (squared) bias both decrease substantially as S increases from 5
(small) to 10 (medium). The MSE continues to decrease as S increases from 10

(medium) to 20 (large).



131
ii.) Large decreases in the (squared) bias and the MSE are associated with
decreases in the BSF, from 1.5 (diamonds and triangles) to 0.5 (squares and
circles), especially when S is 5 (small).

iii.) The remaining factors POV, A,and N j do not seem to be associated with

changes in the MSE or (squared) bias.

The results from the full-factorial model for the (square root of the) bias,
displayed in the sixth row of Table 4, suggest that the important effects contributing to
large changes in the (square root of the) bias are S(5), BSF(0.5), BSF(0.5) x S(5), and
S(10). The least squares (LS) means of the response (square root of the bias) for the
various levels for the number of subjects are plotted in Figure 25 with separate lines

indicating the levels of BSF.

Figure 25: LS Means Plots for (square root) Bias (6’%)
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From the LS means plot in Figure 25 it is observed that the (square root of the) bias
decreases as the number of subjects increases from 5 to 10, regardless of the value of the

BSF. However, this decrease is more pronounced when the BSF is 1.5. The (square root
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of the) bias continues to decrease when BSF is 1.5 as the number of subjects increases
from 10 to 20, however small increases in the (square root of the) bias are seen when BSF
is 0.5.

The results from the full-factorial model for the (log of the) MSE, displayed in the
sixth row of Table 5, suggest that the important effects contributing to large changes in

the (log of the) MSE are BSF(0.5), S(5), and POV(10).

Figure 26: LS Means Plots for (log) MSE (&2)
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LS means plots of for the various levels, namely the between subject variance factor,
the number of subjects, and the percentage of overlap are shown in the plots Figure 26,
panels a.), b.) and c.), respectively. From these LS means plot it is observed that the (log
of the) MSE decreases as the between subject variance factor decreases from 1.5 to 0.5,
the number of subjects increases from 5 to 10, or the percentage of overlap increases
from 10% to 20%. The MSE continues to decrease as the number of subjects is increased
from 10 to 20, however the effect S(10) did not stand out as important on the normal

probability plot.

3.5. Discussion and summary of the Simulation Study
In summary, the simulation results show, the estimation of the mixture proportion is the
least sensitive to the simulation factors considered, while the between subject variance is
the most sensitive. In what follows, the results for each of the parameters are further
discussed.

For the mixture proportion, A, the range of values for both the MSE and the bias
squared are narrow (0 — 0.009). There is a high correlations between the MSE and the
squared bias and therefore the variances of the estimates of A are small across all factor
combinations (variance = MSE — bias squared). The bias and MSE decrease as the
magnitude of the mixture proportion approaches 0.5. This is expected since the variance
of any Bernoulli event is minimized when the probability of the event is 0.5. The
decrease is more pronounced as the percentage of overlap between the two mixing

distribution decreases. In other words, the estimation of the mixture proportion is more
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precise as the two missing distributions become more distinct, which also conforms to
intuition.

For the component means, 44 and u7, the range of values for the bias squared, (0
—12) and (0 — 4), respectively, are larger than seen with the mixture proportion, however
they are considerably smaller than exhibited by the variance parameters. The first
component means are consistently underestimated, while the second component means
are almost always over estimated. These leads to a much smaller bias in the overall mean
of the mixture distribution. Also, the bias in the second component mean is consistently
smaller than the bias in the first component mean. A noteworthy trend is observed
between the two components. While increases in the mixture proportion factor result in
increases in the bias in the first component, the opposite occurs in the second component.
Here, decreases in the mixture proportion factor are associated with increases in the bias.
This could be due to the fact that when a smaller proportion is mixed, the spread of that
component is reduced (see Figure 4 and Figure 5). Decreases in the percentage of
overlap are associated with decreases in the bias across both component means. That is,
the estimation of the component means is more precise as the two mixing densities
become more distinct. For both components, however, the mixture proportion and the
percentage of overlap are the only important factors identified as contributing to large
changes in the bias of the estimates for the component means.

The ranges of the MSE for the component means are similar, about 0 to 35,
indicating that the variance in the estimates for the two components is comparable across

the component means. The important factors contributing to changes in the MSE of the
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estimates for the component means included the number of subjects and the between
subject variance factor. Both component means exhibit decreases in the MSE of their
estimates when the between subject variance factor is decreased or the number of
subjects is increases. Decreases in the MSE for the estimates of the second component
mean are also associated with the increases in the mixture proportion.

A similar high correlation between the squared bias and MSE, as seen when
estimating the mixture proportion, is seen for the component variances, indicative of
small variances for these estimates. Furthermore, as with the component means, the first
component shows much greater magnitudes of bias than the second component,
especially as the mixture proportion moves away from 0.5. The most apparent effects on
MSE and bias, for both component variances, are due to the percentage of overlap and
the mixture proportion. Interestingly, while increases in the mixture proportion factor
result in increases in the bias and MSE in the first component, the opposite occurs in the
second component. Here, decreases in the mixture proportion factor are associated with
increases in the bias and MSE. Decreases in the percentage of overlap result in decreases
in the bias and MSE across when estimating either of the component variances.

Much of the bias (and hence the MSE) observed with the component variances
are due to the weighted EM-algorithm underestimating the component variances. This,
however, is a typical result of the maximum likelihood procedure. The estimate for the
variance parameter in the maximum likelihood procedure in any random-effects model
does not account for the uncertainty in the estimation of the means and therefore suffers

from large bias, and by definition is a biased estimator. An REML approach in the
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normal random-effects model is often used to reduce the bias. One could consider
such an approach for the mixture models as well. Further discussion of this is provided
in chapter 5.

The between subject variance is estimated with the worst precision. The range of
the squared bias and MSE are about (0,120) and (0,12000), respectively. The
considerable size of the MSEs are due to the large variances for the between subject
variance estimates. The number of subjects and the between subject variance factors are
the most important contributors to changes in the MSE and the bias. Both the MSE and
the bias show considerable decreases when the number of subjects is increased and when
the between subject variance factor is decreased. Increases in the number of subjects,
from just S to 10, result in estimates with squared bias of less than 5 units. The effect on
the MSE is just as dramatic. It is also noted that the MSE decreases as the percentage of
overlap increases. This could be due to the fact that as the percentage of overlap
increases the total spread in the mixture decreases.

As a whole, the EM-algorithm proposed in section 2.8.2, estimates very well. The
mixture proportion is estimated with the most accuracy and the between subject variance
with the worst accuracy. The percentage of overlap and the mixture proportion are the
dominating factors in changes in the bias when estimating the mixture proportion and the
component means and variances. The MSEs for all parameter estimates are affected by a
variety of factors described earlier. Precision in one component usually means a
reduction of accuracy in the other component when estimating either the component

means or variances. Small increases in the number of subjects result in dramatic



137
decreases in both the bias and MSE for the estimates of the between subject variance.
Increasing the number of observations per subject from 100 to 200 did not have a large
effect on the MSE or bias for any of the parameter estimates.

When dealing with HRV data, the bimodal nature of the data tends to occur at
high frequencies (in the power spectrum). Thus careful attention must be given to the
long term effects in the data due to lower frequencies trends in the data. These lower
frequencies will dominate the means in the data and the bimodal nature may be lost or
become misleading. Several detrending methods are suggested in section 1.4. The next
chapter focuses on applying the weighted EM-algorithm to the HRV data from the
Loneliness study introduced in section 1.5. The data encountered in this study is a good

example of the necessary detrending of the data.
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4 Data Analysis

4.1. Introduction
In this chapter, the Loneliness data introduced in section 1.5 is analyzed using the
methodology in section 2.8.2. Although this study is not the initial motivation for this
research, it contains the same qualities as the motivational studies. Reasons for using the
data from the Loneliness study rather than the data from the motivational studies is
discussed at the conclusion of this chapter.

The Loneliness data consists of 9 subjects randomly chosen from 89 (51% Male)
undergraduates who participated in a loneliness study at the General Research Center at
the Ohio State University (Cacioppo et al, 2002). The data collected include ECG signal,
age, and gender. The sample of 9 subjects has a mean age of 19.22 years (S.D. = 1.86)
and consists of 4 males (44%). During each ECG recording period, the subjects
performed a series of six psychological stressor tasks and one orthostasis stressor task.
ECG data acquired during the minutes from the five speech stressor tasks, the “Saab”
speech stressor task (BS), ask for a date (AS), describe inanimate objects in room (IS),
why I’'m likeable (LS), and describe ways to school (WS), will be considered in this
analysis. A series of RR-intervals was obtained for each of these five speech stressor
tasks during three recording periods, a baseline period, a preparation period, and a
delivery period. There were two minutes of baseline ECG data collected before each of
the AS, IS, LS, and WS speech stressor tasks and four minutes of baseline ECG data

collected before the BS task. After the baseline period, ECG signals were recorded on
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the subjects during the two minutes allotted to prepare their speeches, and then again
during the two minutes allotted to deliver their speeches. The combination of speech
stressor tasks and recording periods, used in this analysis, along with the number of
minutes recorded for each combination are summarized in Table 6.

Table 6: ECG Minutes in the Loneliness Study

Number of minutes
Period
Task Baseline | Preparation | Delivery
BS 4 2 2
AS 2 2 2
IS 2 2 2
LS 2 2 2
WS 2 2 2

The verbal mental arithmetic task and the orthostasis task are not considered in this
analysis since the ECG signal was not consistently recorded during the baseline,
preparation, and delivery periods for these tasks. A total of 32 minutes of ECG data is
then used for the data analysis seen in this chapter.

After data collection, the ECG signals acquired at 1000 Hertz (Hz) were
decimated to 500 Hz. The R-peaks were then identified using waveform matching
templates and then a time/amplitude criterion (Mandrekar 2002). After identifying the R-
peaks, the RR-interval series were calculated using the distance between successive R-
peaks. This “raw” (unedited) form of the RR-interval data was then obtained from
Mandrekar to be used for analysis in this dissertation and can be found on the data CD

(Appendix 7.4.4). A sample portion of the data can be seen in Appendix 7.5.
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4.2. Data Preparation

In order to use this “raw” RR-interval data for analysis (Appendix 7.4.4), a series
of steps should be performed. First, artifacts in the series, such as missed or spurious
heart beats, need to be identified. The series of RR-intervals from each subject were
manually examined by task and period to identify possible artifacts. An interval was
considered an artifact if it was “large” or “small” in relation to all the other intervals for
that subject during the specified task and period combination, and in relation to the
intervals surrounding the “suspicious” interval. The total number of RR-intervals
measured on each subject, across all combinations of tasks and periods, are displayed in
Table 7.

Table 7: RR-intervals — Useable versus Artifact

RR-intervals

Subject | Useable | Artifacts | Total | % Artifact
1 2101 74 2175 3.40

2 2354 72 2426 2.97

3 2163 102 2265 4.50
4 1982 73 2055 3.55

5 2266 67 2333 2.87

6 2176 60 2236 2.68

7 2060 64 2124 3.01

8 2432 33 2465 1.34

9 2294 43 2337 1.84
Total 19828 588 | 20416 2.88

On average 2.88 percent of the data from each subject was identified as artifacts, with as
much as 4.50% identified for subject 3 and as little as 1.34% identified for subject 8. The
588 intervals identified as artifacts were not used in subsequent analyses.

After excluding artifacts, the data must be detrended in order to remove the ultra-

low frequency trends in the data to reduce some of the non-stationarity in the data
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(Litvack et al., 1995). This is accomplished by fitting first-order polynomials to the
series of RR-intervals obtained from each subject for each combination of task and
period. This results in (9 x 3 x §) 135 separate first-order fitted models. Each fit
produces an estimate for the intercept and slope, along with a set of corresponding
residuals with mean zero. The set of residuals from each fit are added to the estimated
intercept to produce a series of detrended RR-interval data that is still centered around its
original mean (intercept). The slopes and intercepts specified by the fits for the first
subject are displayed in Table 8.

Table 8: Slopes and Intercepts for Detrending — Subject 1

Intercept Task
Slope

Subject Period BS AS IS LS WS
Baseline 924.74 | 947.39 | 939.48 | 940.11 | 978.01

-0.10 0.01 -0.12 -0.17 -0.21
1 Preparation 840.59 | 913.75 | 927.29 | 868.92 | 899.11

0.15 -0.13 -0.32 -0.11 0.70
Delivery 732.31 | 713.22 | 775.05 | 711.73 | 783.14

0.27 0.88 0.77 0.78 0.53

The slopes and intercepts obtained for all 9 subjects can be found in Appendix 7.6. From
Table 8, observe that the average RR-interval length in milliseconds (ms) for the first
subject tends to decreases from baseline to preparation to delivery, consistently across all
tasks. This trend is observed in nearly all of the subjects. That is, there appears to be an
increase in the heart rate from baseline to preparation to delivery.

Finally, in preparation for the analysis, any continuous covariates to be included
in the models should be centered, so that interpretations of the effects are made with

reference to the averages. For these data, the only continuous covariate is the age
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variable (mean age 19.22). This mean age was then subtracted from each subject’s
age to produce the centered age variable to be used in the analysis. After centering the
continuous covariates, the RR-interval series was rescaled by a factor of 10 (RR-interval /
10) for convenience (in order to reduce the magnitude of the results in the subsequent
analysis). This detrended, artifact-free, centered, and rescaled data is what is used for

analysis in this chapter and can be found on the data CD (Appendix 7.4.5).

4.3. The Analysis Data Set

Most methods used for fitting RR-interval data assume that the data arise from a
normal distribution, although it is widely recognized that this assumption is false.
Several researchers have commented on the irregularity in the shapes of the histograms of
RR-interval data (Hashida et al., 1973, Jennings et al., 1974, Eckberg, 1983, Nagaraja,
1995, and Mandrekar, 2005) and most suggest a bimodal pattern in both healthy and heart
diseased adult subjects. Histograms of the 4 baseline minutes from each subject during
the BS task are show in Figure 27. From these 9 histograms, it is clear that there are
large departures from normality. It is further apparent, in terms of the central tendency,
that there is great deal of variability and a suggestion of bimodality, both of which need
to be incorporated into the analyses. For example, subject 3 exhibits a large amount of
variability during the BS baseline period while subject 9 exhibits very little and subject 7
has larger component means than subject 5. In the analysis the subject to subject

variability is incorporated though a random-effects term. The bimodality is incorporated
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through the assumptions of two-component normal-mixture densities for the residuals

as described in Chapter 2.

Figure 27: Histograms of RR-Intervals by Subject (BS baseline)
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The mixture distributions from subject to subject will initially be allowed to have

different mixing proportions as suggested by Figure 27. For example, subject 4 seems to

have a mixture proportion smaller than 0.5 for the first component, while subject 7

indicates a mixture proportion greater than 0.5 for the first component. The current

methods for fitting RR-interval data that allow for normal-mixture distributions do not

accommodate variation between the subjects. Instead, separate models are fit for each
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subject. In addition to modeling the fixed-effects, the methodology provided in this
dissertation allows for the subject to subject variability to be taken into account by
including a random effect (a random intercept for each subject) in the model while
assuming that the observations between subjects are independent. In the next section, the

methodology used to fit the series of RR-interval data from the 9 subjects in this study is

described.

4.4. The Model
The edited series of RR-interval data obtained using the methods described in section 4.2
are modeled using a two-component normal-mixture random-effects model as defined in

section 2.3, given by equation (2.2), y = Zp + €. Interest is in modeling the series of RR-

interval data across the 9 subjects while accounting for variations due to the fixed-effects

and random-effects. Here, the N x 1 vector, y = (YI y2 Y9 )’ , contains the series

of RR-interval data from all 9 subjects across all 15 task by period observation periods.

The vector y i j=1,...,9,1is defined as the N j X 1 vector of observed RR-intervals

9
from the j” subject, N = Z N i The series of observations within the vector y j are

J=1
grouped by task and period in the order in which they were performed by the subjects.
In this analysis, the only random-effect considered is a random subject effect.

Define ; as the random-effects parameter for the j” subject and zjj as the

corresponding design variable for the i" observation on the j subject (z,-j =1 for the j"’
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subject and zjj = 0 otherwise). Then, the N x 9 design matrix for the random-effects

is expressed as

Z1 0 0
0 Z 0
Z= :2 :
0 0 Zg
where Z; =\z; zp; - IN; j) isthe N; x 1 random-effects design matrix for

the ;" subject and reduces to a vector of ones. The random subject effects, S /> are
assumed to be iid and come froma N (0, ag ) , independent of the residuals. The vector

of subject effects, B, then follows a Ng (0,G), where

2
o 0 0
2
G- 0 o 0
2
_0 0 0'5_

Here, the parameter ag. describes the variations in the mean RR-intervals due to the

random subject effects.

Within each subject, the residuals, gjj , are assumed to be iid and come from a

two-component normal-mixture distribution, with component means, Hijk » component

variances, 0'/%, and mixture proportion, A js for k =1,2. For this model, the mixture

proportion, A;, is allowed to vary for each subject. The vector of residuals for each
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subject, € j»are assumed to follow a distribution given by the product of

the N Ji univariate normal-mixture densities for the Ejj» given in equation (2.6) and

expressed as

N j

: . 2 2
PIMX (ej,ujl,ujz,zjl,zjz,ij) = Hf(gij,#ijla/‘iﬂso'l 05,45 |
i=1

The component variance-covariance structures, for each subject, of the vector of

residuals, € j»are independent and given by

2
o 0 0
0 o 0
Ejk= k
2
_0 0 O'k_

Here, the assumption of independence in the residuals from a single subject may be weak
since the observed data are in fact time-series data, and most likely have an inherent auto-
regressive structure. With the inclusion of the random subject effects and assuming the

independence structure for G, the vector of observations from the j’h subject, Y i has

component variance covariance structure V ik given by

2, 2 2 2

0'5+O'k 0'5 0'5

2 2 2

, _ o o.+0o (o2

Vik =Z;GZ} + X} = § 5: k g
2 o o2+o?|
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That is, observations from the same subject have variance O'g + 0']% and covariance

O’g". Although the random-effects assumption leads to a compound symmetric structure

for the correlations among the observations within a subject, other structures, such as the
autoregressive (1) or more complex time-series structures may be more appropriate. The
methodology proposed in Chapter 2 does not allow for structures other than the
compound symmetric, which results from the random-effects assumption. Further
discussion on future research incorporating time-series structures is provided in chapter 5.
The vector of residuals, for all subjects, €, is assumed to follow a distribution
given by the product of the N univariate two-component normal-mixture densities for the

Ejj» given in equation (2.21) and expressed as

s N
dmx (811,102,217, £2,1) =H

i :l\

2 2
(gij;'uiﬂ’”ijz’o'l ’Gz’ﬂj)-

The component variance-covariance structures, for all subjects, of the vector of

residuals, €, is block-diagonal matrix given by

ik O 0
0 0
Ly = ?k
0 0 - Zox

With the inclusion of the random subject effects and assuming the independence structure
for G, the vector of observations for all subjects, Y, has component variance covariance

structure Vj given by
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Vig 0 0
Vor - 0

Vi =2GZ +Ij = 2k
0 0 - Vo

That is, observations from the same subject have variance ag + O’I% and covariance 0'§ ,

and observations from different subjects have variance 0'§ + 0']% and covariance 0.

Fixed-effects are incorporated into the model by modeling the component means.
The models for the component means, incorporating the levels of the fixed effect, are
given by

P
Hijk = 2 @pXijp-
p=l

Here P is the total number of estimable fixed-effects parameters in the model. For the
analysis data, the following fixed-effects are considered for the full model.

» Demog raphic Variables: age and gender

» Design Variables: task, period, and the task x period interaction
Thus, the over parameterized (singular) model includes 27 fixed-effects for each
component: 1 intercept effect, 1 age effect, 2 gender effects, 5 task effects, 3 period
effects, and 15 task x period interaction effects. This model is not full rank and thus 10
of the fixed-effects in each component are not estimable with this parameterization. The
full-rank (nonsingular) model is obtained with reference cell parameterization. This

model then has P = 17 estimable fixed-effects in each component: 1 intercept effect, 1

age effect, 1 gender effects, 4 task effects, 2 period effects, and 8 task x period interaction
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effects. Using the reference cell parameterization, the component vectors of fixed-

effects parameters, oy, k= 1,2, are defined as ap =(ag; agy - ag17) . Next,

define the N j X 17 fixed-effects design matrix for the j’h as

X151 X152 o XjP

X271 X242 o X25P
ij .] J ) ]

xijl xijZ xijl

where x;j;, denotes the value of the p" fixed-effects value for the i observation on the ;"

subject. Then, the fixed-effects design matrix for all subjects is defined as
X=(X] Xp - Xo )'. The following is used to define the values of x;, .
* [ ntercept (p=1) Xijl = 1 for all observations on all subjects.
" Age(p=2) xjp = Age of /" subject — 19.22.
* Gender (p=3) xj3 =1 if /" subject is Female, xjj3 =0 if /" subject is Male.
» ASTask (p=4) Xij4 = 1 if i RR-interval from the j** subject is from the AS task,
Xjj4 = 0 otherwise.
* BS Task (p=5) x5 = 1if i" RR-interval from the j* subject is from the BS task,
xjj5 = 0 otherwise.
» | S Task (p=06) Xij6 = 1 if i RR-interval from the /" subject is from the IS task,

xijj6 = 0 otherwise.
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» LS Task (p=7) Xjj7 = 1 if /" RR-interval from the j'h subject is from the LS
task, x;;7 = 0 otherwise.

» Baseline (p =38) Xij8 = 1 if i RR-interval from the j subject is from the baseline
period, x;;g = 0 otherwise.

® Delivery (p=9) Xij9 = 1 if i RR-interval from the j'h subject is from the delivery
period, Xjj9 = 0 otherwise.

s AS x Baseline (p = 10) Xij10 = 1 if i RR-interval from the j'h subject is from the
AS task and the baseline period, x;;1( = 0 otherwise.

» AS x Delivery (p=11) Xij11 = 1 if " RR-interval from the j* subject is from the
AS task and the delivery period, Xjj11 = 0 otherwise.

» BS x Baseline (p = 12) Xjj12 = 1 if " RR-interval from the j** subject is from the
BS task and the baseline period, x;17 = 0 otherwise.

* BS x Delivery (p=13) Xij13 = 1 if i RR-interval from the j’h subject is from the
BS task and the delivery period, Xij13 = 0 otherwise.

s | S x Baseline (p = 14) Xijj14 =1 if i RR-interval from the /" subject is from the IS
task and the baseline period, x;j14 =0 otherwise.

th

s | S x Delivery (p = 15) Xjj15 =1 if i" RR-interval from the ;" subject is from the IS

task and the delivery period, Xjj15 =0 otherwise.
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" L S x Baseline (p = 16) xj16 =1 if i" RR-interval from the j subject is from
the IS task and the baseline period, Xij16 = 0 otherwise.
» L S x Delivery (p=17) Xij17 = 1 if " RR-interval from the 7™ subject is from the IS
task and the delivery period, x;;17 = 0 otherwise.
Due to the reference cell parameterization, the estimate for the ¥ component intercept

parameter, o], represents the mean RR-interval length in the & component for a male
subject with an average of 19.22 during the preparation period of the WS task. Then, the
estimate for the age parameter, oz, represents the average increase in the K component
intercept parameter each year increase in age from the average age of 19.22. The
estimate for the gender parameter, a3, represents the average increase in the K"
component intercept parameter due to being a female rather than a male. The estimates
for the task parameters, o g4, g5, A6, and o7, each represents the average
increases in the & component intercept parameter due to the tasks AS, BS, IS, and LS,
respectively, rather than the WS task. The estimates for the period parameters, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>